

# **NEET (UG)-2021**

### QUESTION PAPER (CODE O3) WITH ANSWERS DATED 12<sup>™</sup> SEPTEMBER, 2021

## PHYSICS

#### Choose the correct ( $\checkmark$ ) answer:

#### SECTION-A

- 1 Polar molecules are the molecules
  - (1) Acquire a dipole moment only when magnetic field is absent
  - (2) Having a permanent electric dipole moment
  - (3) Having zero dipole moment
  - (4) Acquire a dipole moment only in the presence of electric field due to displacement of charges

#### Ans. (2)

A particle is released from height S from the surface 5. 2. of the Earth. At a certain height its kinetic energy is three times its potential energy. The height from the surface of earth and the speed of the particle at that instant are respectively

(1) 
$$\frac{S}{2}, \frac{\sqrt{3gS}}{2}$$
 (2)  $\frac{S}{4}, \sqrt{\frac{3gS}{2}}$ 

(3) 
$$\frac{S}{4}, \frac{3gS}{2}$$
 (4)  $\frac{S}{4}, \frac{\sqrt{3gS}}{2}$ 

Ans. (2)

Column-I gives certain physical terms associated 3. with flow of current through a metallic conductor. Column-II gives some mathematical relations involving electrical quantities, Match Column-I and Column-II with appropriate relations.

Column-I Column-II  
(A) Drift Velocity (P) 
$$\frac{m}{m^2}$$

- $ne^2$ o (P)
- (B) Electrical Resistivity (Q) nev<sub>d</sub>
- (R)  $\frac{eE}{m}\tau$ (C) Relaxation Period
- (S) (D) Current Density
- (1)  $A \rightarrow (R), B \rightarrow (P), C \rightarrow (S), D \rightarrow (Q)$
- (2)  $A \rightarrow (R), B \rightarrow (Q), C \rightarrow (S), D \rightarrow (P)$

- (3)  $A \rightarrow (R), B \rightarrow (S), C \rightarrow (P), D \rightarrow (Q)$
- (4)  $A \rightarrow (R), B \rightarrow (S), C \rightarrow (Q), D \rightarrow (P)$

#### Ans. (3)

- 4. If force [F], acceleration [A] and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy
  - (1) [F] [A]  $[T^{-1}]$ (2) [F] [A<sup>-1</sup>] [T]
  - (4) [F] [A] [T<sup>2</sup>] (3) [F] [A] [T]

#### Ans. (4)

The escape velocity from the Earth's surface is v. The escape velocity from the surface of another planet having a radius, four times that of Earth and same mass density is

| (1) | 3 <i>v</i> | (2) 4 v |
|-----|------------|---------|
| (3) | V          | (4) 2 v |

Ans. (2)

6. A small block slides down on a smooth inclined plane, starting from rest at time t = 0. Let  $S_n$  be the distance travelled by the block in the interval t = n - 1 to t = n.

Then, the ratio 
$$\frac{S_n}{S_{n+1}}$$
 is

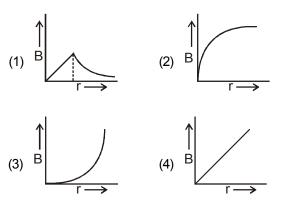
(1) 
$$\frac{2n+1}{2n-1}$$
 (2)  $\frac{2n}{2n-1}$ 

(3) 
$$\frac{2n-1}{2n}$$
 (4)  $\frac{2n-1}{2n+1}$ 

#### Ans. (4)

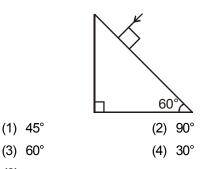
7. The velocity of a small ball of mass M and density d, when dropped in a container filled with glycerine becomes constant after some time. If the density of

glycerine is  $\frac{d}{2}$ , then the viscous force acting on the ball will be


(1) 
$$\frac{3}{2}Mg$$
 (2) 2 Mg

$$(3) \quad \frac{Mg}{2} \qquad \qquad (4) \quad Mg$$

Ans. (3)


## 

 A thick current carrying cable of radius 'R' carries 12. current 'l' uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance 'r' from the axis of the cable is represented by



#### Ans. (1)

9. Find the value of the angle of emergence from the prism. Refractive index of the glass is  $\sqrt{3}$ .



#### Ans. (3)

10. A screw gauge gives the following readings when used to measure the diameter of a wire

Main scale reading : 0 mm

Circular scale reading : 52 divisions

Given that 1 mm on main scale corresponds to 100 divisions on the circular scale. The diameter of the wire from the above data is

| (1) | 0.26 cm | (2) | 0.052 cm |
|-----|---------|-----|----------|
| (3) | 0.52 cm | (4) | 0.026 cm |

#### Ans. (2)

- 11. A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 MeV while that of fragments is 8.5 MeV. The total gain in the Binding Energy in the process is
  - (1) 804 MeV
  - (2) 216 MeV
  - (3) 0.9 MeV
  - (4) 9.4 MeV

#### Water falls from a height of 60 m at the rate of 15 kg/ s to operate a turbine. The losses due to frictional force are 10% of the input energy. How much power is

NEET (UG)-2021 (Code : O3)

generated by the turbine? (g =  $10 \text{ m/s}^2$ ) (1) 12.3 kW (2) 7.0 kW

| (3) | 10.2 kW | (4) | 8.1 kW |
|-----|---------|-----|--------|

#### Ans. (4)

- 13. A convex lens 'A' of focal length 20 cm and a concave lens 'B' of focal length 5 cm are kept along the same axis with a distance 'd' between them. If a parallel beam of light falling on 'A' leaves 'B' as a parallel beam. then the distance 'd' in cm will be
  - (1) 50 (2) 30
  - (3) 25 (4) 15

#### Ans. (4)

- 14. A lens of large focal length and large aperture is best suited as an objective of an astronomical telescope since
  - (1) A large aperture contributes to the quality and visibility of the images
  - (2) A large area of the objective ensures better light gathering power
  - (3) A large aperture provides a better resolution
  - (4) All of the above

#### Ans. (4)

- 15. The electron concentration in an n-type semiconductor is the same as hole concentration in a p-type semiconductor. An external field (electric) is applied across each of them. Compare the currents in them.
  - (1) Current n-type > current in p-type
  - (2) No current will flow in p-type, current will only flow in n-type
  - (3) Current in n-type = current in p-type
  - (4) Current in p-type > current in n-type

#### Ans. (1)

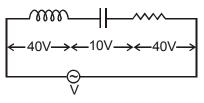
16. A body is executing simple harmonic motion with frequency 'n', the frequency of its potential energy is

| (1) 3n | (2) 4n |
|--------|--------|
|--------|--------|

- (3) n (4) 2n
- Ans. (4)
- 17. A cup of coffee cools from 90°C to 80°C in t mintues, when the room temperature is 20°C. The time taken by a similar cup of coffee to cool from 80°C to 60°C at a room temperature same at 20°C is

| (1) | $\frac{10}{13}t$ | (2) | $\frac{5}{13}t$ |
|-----|------------------|-----|-----------------|
|-----|------------------|-----|-----------------|

(3) 
$$\frac{13}{10}t$$
 (4)  $\frac{13}{5}t$ 


Ans. (4)

| NE                | ET (UG)-2021 (Code : O3)                                                                                                                                                                                                 |                                                                                                                                          |                   |                                                                            |                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 18.               | 18. In a potentiometer circuit a cell of EMF 1.5V gives<br>balance point at 36 cm length of wire. If another cell<br>of EMF 2.5 V replaces the first cell, then at what<br>length of the wire, the balance point occurs? |                                                                                                                                          |                   | and 40 V, respectively                                                     | across L, C and R is 40 V, 10 V<br>$\alpha$ . The amplitude of current flowing<br>ircuit is $10\sqrt{2}$ A. The impedance     |
|                   | (1) 64 cm                                                                                                                                                                                                                | (2) 62 cm                                                                                                                                |                   | (1) 4 Ω                                                                    | (2) 5 Ω                                                                                                                       |
|                   | (3) 60 cm                                                                                                                                                                                                                | (4) 21.6 cm                                                                                                                              |                   |                                                                            |                                                                                                                               |
| Ans               | . (3)                                                                                                                                                                                                                    |                                                                                                                                          |                   | (3) $4\sqrt{2}\Omega$                                                      | (4) $5/\sqrt{2}\Omega$                                                                                                        |
| 19.               | consists of four wires o<br>cross-section and same                                                                                                                                                                       | e of a parallel connection that<br>f equal length, equal area of<br>material is $0.25\Omega$ . What will<br>nce if they are connected in | <b>Ans</b><br>23. |                                                                            | citance of the combination shown                                                                                              |
|                   | (1) 1 Ω                                                                                                                                                                                                                  | (2) 4 Ω                                                                                                                                  |                   |                                                                            |                                                                                                                               |
| Ans               | (3) 0.25 Ω<br><b>. (2)</b>                                                                                                                                                                                               | (4) 0.5 Ω                                                                                                                                |                   |                                                                            |                                                                                                                               |
| 20.               | A radioactive nucleus decay in the sequence                                                                                                                                                                              | <sup>A</sup> X undergoes spontaneous                                                                                                     |                   | (1) $\frac{C}{2}$                                                          | (2) $\frac{3C}{2}$                                                                                                            |
|                   |                                                                                                                                                                                                                          | <sub>-2</sub> D , where Z is the atomic<br>he possible decay particles in                                                                |                   | Consider the following                                                     | (4) 2C<br>ng statements (A) and (B) and                                                                                       |
|                   |                                                                                                                                                                                                                          | <ul> <li>(2) β<sup>-</sup>, α, β<sup>+</sup></li> <li>(4) α, β<sup>+</sup>, β<sup>-</sup></li> </ul>                                     |                   | identify the <b>correct</b> a<br>(A) A zener diode is<br>used as a voltage | connected in reverse bias, when                                                                                               |
| <b>Ans</b><br>21. | . <b>(1)</b><br>A dipole is placed in an e                                                                                                                                                                               | lectric field as shown. In which                                                                                                         |                   | -                                                                          | rrier of p-n junction lies between                                                                                            |
|                   | direction will it move?                                                                                                                                                                                                  | _                                                                                                                                        |                   | (2) <b>(A)</b> is incorrect b                                              |                                                                                                                               |
|                   | - ***                                                                                                                                                                                                                    | ********                                                                                                                                 |                   | (3) <b>(A)</b> and <b>(B)</b> both                                         |                                                                                                                               |
|                   | - and a start of the                                                                                                          | $\rightarrow$                                                                                                                            |                   | .,.,                                                                       |                                                                                                                               |
|                   | +q                                                                                                                                                                                                                       | <b>-</b> ¶<br>-q                                                                                                                         | A                 | (4) <b>(A)</b> and <b>(B)</b> both                                         |                                                                                                                               |
|                   | **************************************                                                                                                                                                                                   |                                                                                                                                          | Ans               |                                                                            | acceptio wave proposition in v                                                                                                |
|                   | decrease                                                                                                                                                                                                                 | as its potential energy will                                                                                                             | 20.               | direction, which one of                                                    | nagnetic wave propagating in x-<br>of the following combination gives<br>lirections for electric field (E) and<br>spectively? |
|                   | increase                                                                                                                                                                                                                 | as its potential energy will                                                                                                             |                   |                                                                            | (2) $-\hat{j} + \hat{k}, -\hat{j} + \hat{k}$                                                                                  |
|                   |                                                                                                                                                                                                                          | s potential energy will increase<br>as its potential energy will                                                                         | Ans               |                                                                            | $(4)  -\hat{j}+\hat{k}, -\hat{j}-\hat{k}$                                                                                     |
| _                 |                                                                                                                                                                                                                          |                                                                                                                                          | 7113              | ·· (¬/                                                                     |                                                                                                                               |

#### Ans. (4)

NEET (UG)-2021 (Code : O3)

22. An inductor of inductance L, a capacitor of capacitance C and a resistor of resistance 'R' are connected in series to an ac source of potential difference 'V' volts as shown in figure.



(1) 10<sup>16</sup>

(2) 10<sup>15</sup>

(3) 10<sup>18</sup>
(4) 10<sup>17</sup>

Ans. (1)

26. The number of photons per second on an average emitted by the source of monochromatic light of

wavelength 600 nm, when it delivers the power of  $3.3 \times 10^{-3}$  watt will be (h = 6.6 ×  $10^{-34}$  Js)

#### NEET (UG)-2021 (Code : O3)

#### Target PMT EXClusively for MEDICAL ENTRANCE

27. A paralle plate capacitor has a uniform electric 32.

field ' $\vec{E}$ ' in the space between the plates. If the distance between the plate is 'd' and the area of each plate is 'A', the energy stored in the capacitor is ( $\varepsilon_0$  = permittivity of free space)

(1) 
$$\frac{1}{2}\varepsilon_0 E^2 A d$$
 (2)  $\frac{E^2 A d}{\varepsilon_0}$   
(3)  $\frac{1}{2}\varepsilon_0 E^2$  (4)  $\varepsilon_0 E A d$ 

#### Ans. (1)

28. A capacitor of capacitance 'C', is connected across an ac source of voltage V, given by

$$V = V_0 \sin \omega t$$

The displacement current between the plates of the capacitor, would then be given by

(1) 
$$I_d = \frac{V_0}{\omega C} \sin \omega t$$
 (2)  $I_d = V_0 \omega C \sin \omega t$ 

(3) 
$$I_d = V_0 \omega C \cos \omega t$$
 (4)  $I_d = \frac{V_0}{\omega C} \cos \omega t$ 

#### Ans. (3)

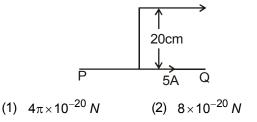
29. Two charged spherical conductors of radius  $R_1$  and  $R_2$  are connected by a wire. Then the ratio of surface charge densities of the spheres ( $\sigma_1/\sigma_2$ ) is

(1) 
$$\sqrt{\left(\frac{R_1}{R_2}\right)}$$
 (2)  $\frac{R_1^2}{R_2^2}$   
(3)  $\frac{R_1}{R_2}$  (4)  $\frac{R_2}{R_1}$ 

#### Ans. (4)

30. An electromagnetic wave of wavelength ' $\lambda$ ' is incident on a photosensitive surface of negligible work function. If 'm' mass is of photoelectron emitted from the surface has de-Broglie wavelength  $\lambda_d$ , then

(1) 
$$\lambda = \left(\frac{2mc}{h}\right)\lambda_d^2$$
 (2)  $\lambda = \left(\frac{2h}{mc}\right)\lambda_d^2$   
(3)  $\lambda = \left(\frac{2m}{hc}\right)\lambda_d^2$  (4)  $\lambda_d = \left(\frac{2mc}{h}\right)\lambda^2$ 


#### Ans. (1)

31. A spring is stretched by 5 cm by a force 10 N. The time period of the oscillations when a mass of 2 kg is suspended by it is

| (1) | 3.14 s   | (2) | 0.628 s |
|-----|----------|-----|---------|
| (3) | 0.0628 s | (4) | 6.28 s  |

Ans. (2)

An infinitely long straight conductor carries a current of 5 A as shown. An electron is moving with a speed of  $10^5$  m/s parallel to the conductor. The perpendicular distance between the electron and the conductor is 20 cm at an instant. Calculate the magnitude of the force experienced by the electron at that instant.



(3) 
$$4 \times 10^{-20} N$$
 (4)  $8\pi \times 10^{-20} N$ 

#### Ans. (2)

 The half-life of a radioactive nuclide is 100 hours. The fraction of original activity that will remain after 150 hours would be

(1) 
$$\frac{3}{2}$$
 (2)  $\frac{2}{3\sqrt{2}}$   
(3)  $\frac{1}{2}$  (4)  $\frac{1}{2\sqrt{2}}$ 

Ans. (4)

34. Match **Column-I** and **Column-II** and choose the **correct** match from the given choices

Column-l

#### Column-II

(A) Root mean square (P)  $\frac{1}{3}nm\overline{v}^2$ 

speed of gas molecueles

(B) Pressure exerted by (Q)  $\sqrt{\frac{3R}{M}}$ 

ideal gas

(C) Average kinetic energy (R)  $\frac{5}{2}RT$ 

of a molecule

(D) Total internal energy of (S)  $\frac{3}{2}k_BT$ 

1 mole of a diatomic gas

- (1)  $A \rightarrow (Q), B \rightarrow (P), C \rightarrow (S), D \rightarrow (R)$
- (2)  $A \rightarrow (R), B \rightarrow (Q), C \rightarrow (P), D \rightarrow (S)$
- (3)  $A \rightarrow (R), B \rightarrow (P), C \rightarrow (S), D \rightarrow (Q)$
- (4)  $A \rightarrow (Q), B \rightarrow (R), C \rightarrow (S), D \rightarrow (P)$

| NE  | ET (UG)-2021 (Code : O3)                                                                                                        |     | ∂Targ <u>et <b>PMT</b></u>                                                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 35. | 5. If E and G respectively denote energy and gravitational                                                                      |     | A ball of mass 0.15 kg is dropped from a height 10m, strikes the ground and rebounds to the same height.                              |
|     | constant, then $\frac{E}{G}$ has the dimensions of                                                                              |     | The magnitude of impulse imparted to the ball is $(g = 10 \text{ m/s}^2)$ nearly                                                      |
|     | (1) $[M] [L^0] [T^0]$                                                                                                           |     | (1) 2.1 kg m/s (2) 1.4 kg m/s                                                                                                         |
|     | (2) $[M^2] [L^{-2}] [T^{-1}]$                                                                                                   |     | (3) 0 kg m/s (4) 4.2 kg m/s                                                                                                           |
|     | (3) $[M^2] [L^{-1}] [T^0]$                                                                                                      | Ans |                                                                                                                                       |
| Ano | (4) [M] $[L^{-1}] [T^{-1}]$                                                                                                     | 40. | A step down transformer connected to an ac mains supply of 220 V is made to operate at 11 V, 44 W lamp.                               |
| Ans | SECTION-B                                                                                                                       |     | Ignoring power losses in the transformer, what is the current in the primary circuit?                                                 |
| 36. | From a circular ring of mass 'M' and radius 'R' an arc                                                                          |     | (1) 2 A (2) 4 A                                                                                                                       |
|     | corresponding to a 90° sector is removed. The moment                                                                            |     | (3) 0.2 A (4) 0.4 A                                                                                                                   |
|     | of inertia of the remaining part of the ring about an axis passing through the centre of the ring and                           | Ans | . (3)                                                                                                                                 |
|     | perpendicular to the plane of the ring is 'K' times 'MR <sup>2</sup> '.                                                         | 41. | Twenty seven drops of same size are charged at 220                                                                                    |
|     | Then the value of 'K' is                                                                                                        |     | V each. They combine to form a bigger drop. Calculate the potential of the bigger drop.                                               |
|     | (1) $\frac{1}{4}$ (2) $\frac{1}{8}$                                                                                             |     | (1) 1520 V                                                                                                                            |
|     | 4 0                                                                                                                             |     | (2) 1980 V                                                                                                                            |
|     | (3) $\frac{3}{4}$ (4) $\frac{7}{8}$                                                                                             |     | (3) 660 V                                                                                                                             |
|     | т <b>С</b>                                                                                                                      |     | (4) 1320 V                                                                                                                            |
| Ans |                                                                                                                                 | Ans |                                                                                                                                       |
| 37. | A uniform conducting wire of length 12 <i>a</i> and resistance<br>'R' is wound up as a current carrying coil in the shape<br>of | 42. | For the given circuit, the input digital signals are applied at the terminals A, B and C. What would be the output at the terminal t? |
|     | (i) an equilateral triangle of side 'a'                                                                                         |     | $t_1$ $t_2$ $t_3$ $t_4$ $t_5$ $t_6$                                                                                                   |
|     | (ii) a square of side 'a'.                                                                                                      |     |                                                                                                                                       |
|     | The magnetic dipole moments of the coil in each case respectively are                                                           |     | 5                                                                                                                                     |
|     |                                                                                                                                 |     | B 0                                                                                                                                   |
|     | (1) $3 Ia^2$ and $4 Ia^2$                                                                                                       |     |                                                                                                                                       |
|     | (2) $4 Ia^2$ and $3 Ia^2$                                                                                                       |     |                                                                                                                                       |
|     | (3) $\sqrt{3} la^2$ and $3 la^2$                                                                                                |     | A•                                                                                                                                    |
|     |                                                                                                                                 |     |                                                                                                                                       |
|     | (4) $3 Ia^2$ and $Ia^2$                                                                                                         |     | Ве                                                                                                                                    |
| Ans |                                                                                                                                 |     |                                                                                                                                       |
| 38. | Two conducting circular loops of radii $R_1$ and $R_2$ are placed in the same plane with their centres coinciding.              |     |                                                                                                                                       |
|     | If $R_1 >> R_2$ , the mutual inductance M between them                                                                          |     | (1) $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                              |
|     | will be directly proportional to                                                                                                |     | (i) <u>-</u> 0 V                                                                                                                      |
|     | (1) $\frac{R_1^2}{R_2}$ (2) $\frac{R_2^2}{R_1}$                                                                                 |     | (2) 5 V                                                                                                                               |
|     | $(P_1, R_2)$ $(P_2, R_1)$                                                                                                       |     |                                                                                                                                       |
|     | $R_1$ $R_2$                                                                                                                     |     | (3)5 V                                                                                                                                |
|     | (3) $\frac{R_1}{R_2}$ (4) $\frac{R_2}{R_1}$                                                                                     |     | (4) 5 V<br>0 V                                                                                                                        |
| Ans | . (2)                                                                                                                           | Ans |                                                                                                                                       |
|     |                                                                                                                                 |     |                                                                                                                                       |

#### NEET (UG)-2021 (Code : O3)

 $v = kV_{e}$  (k < 1) from the surface of the earth.

 $(V_e = escape velocity)$ 

The maximum height above the surface reached by the particle is

(1) 
$$\frac{R^2 k}{1+k}$$
 (2)  $\frac{Rk^2}{1-k^2}$   
(3)  $R\left(\frac{k}{1-k}\right)^2$  (4)  $R\left(\frac{k}{1+k}\right)^2$ 

#### Ans. (2)

- 44. A car starts from rest and accelerates at 5 m/s<sup>2</sup>. At t = 4s, a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at t = 6s ? (Take g = 10 m/s<sup>2</sup>)
  - (1)  $20\sqrt{2}$  m/s, 0
  - (2)  $20\sqrt{2}$  ,10 m/s<sup>2</sup>
  - (3) 20 m/s, 5 m/s<sup>2</sup>
  - (4) 20 m/s, 0

#### Ans. (2)

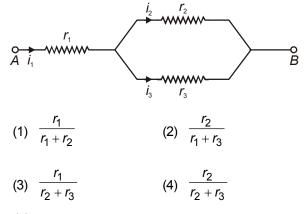
- 45. A series LCR circuit containing 5.0 H inductor, 80 μF capacitor and 40  $\Omega$  resistor is connected to 230 V variable frequency ac source. The angular frequencies of the source at which power transferred to the circuit is half the power at the resonant angular frequency are likely to be
  - (1) 46 rad/s and 54 rad/s
  - (2) 42 rad/s and 59 rad/s
  - (3) 25 rad/s and 75 rad/s
  - (4) 50 rad/s and 25 rad/s

#### Ans. (1)

46. A particle moving in a circle of radius R with a uniform speed takes a time T to complete one revolution.

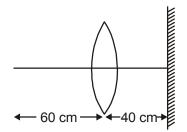
If this particle were projected with the same speed at an angle ' $\theta$ ' to the horizontal, the maximum height attained by it equals 4R. The angle of projection,  $\theta$ , is then given by

(1) 
$$\theta = \sin^{-1} \left( \frac{\pi^2 R}{g T^2} \right)^{1/2}$$
 (2)  $\theta = \sin^{-1} \left( \frac{2g T^2}{\pi^2 R} \right)^{1/2}$ 


(3) 
$$\theta = \cos^{-1} \left( \frac{gT^2}{\pi^2 R} \right)^{1/2}$$
 (4)  $\theta = \cos^{-1} \left( \frac{\pi^2 R}{gT^2} \right)^{1/2}$ 

Ans. (2)

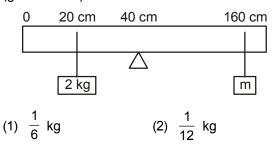
43. A particle of mass 'm' is projected with a velocity 47. Three resistors having resistances  $r_1$ ,  $r_2$  and  $r_3$  are


connected as shown in the given circuit. The ratio  $\frac{I_3}{I_2}$ 

of currents in terms of resistances used in the circuit is



#### Ans. (4)


48. A point object is placed at a distance of 60 cm from a convex lens of focal length 30 cm. If a plane mirror were put perpendicular to the principal axis of the lens and at a distance of 40 cm from it, the final image would be formed at a distance of



- (1) 30 cm from the plane mirror, it would be a virtual image
- (2) 20 cm from the plane mirror, it would be a virtual image
- (3) 20 cm from the lens, it would be a real image
- (4) 30 cm from the lens, it would be a real image

#### Ans. (2)

49. A uniform rod of length 200 cm and mass 500 g is balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass 'm' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of 'm' such that the rod is in equilibrium.  $(g = 10 \text{ m/s}^2)$ 



| NEET (UG)-2021 ( | (Code : O3) |
|------------------|-------------|
|------------------|-------------|

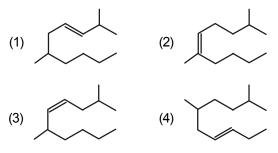


#### Ans. (2)

50. In the product

$$\vec{F} = q(\vec{v} \times \vec{B}) = q\vec{v} \times (B\hat{i} + B\hat{j} + B_0\hat{k})$$

For q = 1 and 
$$\vec{v} = 2\hat{i} + 4\hat{j} + 6\hat{k}$$
 and


$$\vec{F} = 4\hat{i} - 20\hat{j} + 12\hat{k}$$

#### **SECTION-A**

- 51. The compound which shows metamerism is :
  - (1)  $C_3H_6O$  (2)  $C_4H_{10}O$
  - (3)  $C_5H_{12}$  (4)  $C_3H_8O$

#### Ans. (2)

52. The correct structure of 2,6-dimethyl-dec-4-ene is :



#### Ans. (3)

- The correct sequence of bond enthalpy of 'C–X' bond is :
  - (1)  $CH_3 F < CH_3 CI > CH_3 Br > CH_3 I$
  - (2)  $CH_3 CI > CH_3 F > CH_3 Br > CH_3 I$
  - (3)  $CH_3 F < CH_3 CI < CH_3 Br < CH_3 I$
  - (4)  $CH_3 F > CH_3 CI > CH_3 Br > CH_3 I$

#### Ans. (4)

- 54. Zr (Z = 40) and Hf(Z = 72) have similar atomic and ionic radii because of :
  - (1) Lanthanoid contraction
  - (2) Having similar chemical properties
  - (3) Belonging to same group
  - (4) Diagonal relationship

#### Ans. (1)

- 55. Right option for the number of tetrahedral and octahedral voids in hexagonal primitive unit cell are :
  - (1) 2, 1 (2) 12, 6
  - (3) 8, 4 (4) 6, 12
- Ans. (2)

What will be the complete expression for  $\vec{B}$ 

- (1)  $8\hat{i} + 8\hat{j} 6\hat{k}$
- (2)  $6\hat{i} + 6\hat{j} 8\hat{k}$

(3)  $-8\hat{i}-8\hat{j}-6\hat{k}$ 

(4) 
$$-6\hat{i} - 6\hat{j} - 8\hat{k}$$

Ans. (4)

CHEMISTRY

- BF<sub>3</sub> is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are :
  - (1) sp<sup>2</sup> and 6

(3)  $sp^3$  and 4

#### Ans. (1)

57. The following solutions were prepared by dissolving 10 g of glucose  $(C_6H_{12}O_6)$  in 250 ml of water  $(P_1)$ , 10 g of urea  $(CH_4N_2O)$  in 250 ml of water  $(P_2)$  and 10 g of sucrose  $(C_{12}H_{22}O_{11})$  in 250 ml of water  $(P_3)$ . The right option for the decreasing order of osmotic pressure of these solutions is :

(1) 
$$P_2 > P_3 > P_1$$
 (2)  $P_3 > P_1 > P_2$ 

(3) 
$$P_2 > P_1 > P_3$$
 (4)  $P_1 > P_2 > P_3$ 

#### Ans. (3)

- 58. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?
  - (1) Gamma (γ) (2) Neutron (n)
  - (3) Beta ( $\beta^{-}$ ) (4) Alpha ( $\alpha$ )

#### Ans. (3)

- 59. Ethylene diaminetetraacetate (EDTA) ion is :
  - (1) Bidentate ligand with two "N" donor atoms
  - (2) Tridentate ligand with three "N" donor atoms
  - (3) Hexadentate ligand with four "O" and two "N" donor atoms
  - (4) Unidentate ligand

#### Ans. (3)

60. What is the IUPAC name of the organic compound formed in the following chemical reaction?

Acetone  $\xrightarrow{(i)C_2H_5MgBr, dry Ether}$  Product  $\xrightarrow{(ii)H_2O, H^+}$ 

- (1) Pentan-3-ol
- (2) 2-methyl butan-2-ol
- (3) 2-methyl propan-2-ol
- (4) Pentan-2-ol
- Ans. (2)

| <b>d)</b> ] |                                                          |                                                           | NEET (UG)-2021 (Code : O                                                                                              |
|-------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 61.         |                                                          | rmed in dehydrohalogenation                               |                                                                                                                       |
|             | product formation is ba                                  |                                                           | S Choose the correct answer from the options give below.                                                              |
|             | (1) Hofmann Rule                                         | (2) Huckel's Rule                                         | (1) $A \rightarrow (III), B \rightarrow (I), C \rightarrow (IV), D \rightarrow (II)$                                  |
|             | (3) Saytzeff's Rule                                      | (4) Hund's Rule                                           | (2) $A \rightarrow (IV), B \rightarrow (III), C \rightarrow (II), D \rightarrow (I)$                                  |
| Ans         | . (3)                                                    |                                                           | (3) $A \rightarrow (IV), B \rightarrow (III), C \rightarrow (I), D \rightarrow (II)$                                  |
| 62.         |                                                          | ving reactions is the metal<br>? Choose the right option. | (4) $A \rightarrow (II), B \rightarrow (III), C \rightarrow (IV), D \rightarrow (I)$                                  |
|             | (1) $Fe + 2HCI \rightarrow FeCl_2$                       | $_2 + H_2 \uparrow$                                       | <b>Ans. (3)</b><br>69. The major product of the following chemical react                                              |
|             | (2) $2Pb(NO_3)_2 \rightarrow 2Pb$                        | $OO + 4NO_2 + O_2 \uparrow$                               | is :                                                                                                                  |
|             | (3) $2\text{KCIO}_3 \xrightarrow{\Delta} 2\text{KCIO}_3$ | CI + 3O <sub>2</sub>                                      | $CH_{3} \rightarrow CH - CH = CH_{2} + HBr \xrightarrow{(C_{6}H_{5}CO)_{2}O_{2}}?$                                    |
|             | (4) $Cr_2O_3 + 2AI \longrightarrow$                      | $AI_2O_3 + 2Cr$                                           | CH <sub>3</sub>                                                                                                       |
| Ans         | . (4)                                                    |                                                           | $(1) \begin{array}{c} CH_{3} \\ CH_{3} \\ H_{3} \end{array} \begin{array}{c} CH - CH - CH_{3} \\ H \\ Br \end{array}$ |
|             | • •                                                      | following is the correct option                           | n Br                                                                                                                  |
|             |                                                          | etween $C_P$ and $C_V$ for one mole                       |                                                                                                                       |
|             | (1) $C_{P} = RC_{V}$                                     | (2) $C_V = RC_P$                                          | C' CH <sub>3</sub>                                                                                                    |
|             | (3) $C_P + C_V = R$                                      | (4) $C_P - C_V = R$                                       | CH <sub>3</sub>                                                                                                       |
| Ans         |                                                          |                                                           | (3) $\frac{CH_3}{CH_3} > CH - CH_2 - CH_2 - Br$                                                                       |
|             | . ,                                                      | deficiency disease of :                                   | с.<br>                                                                                                                |
|             | (1) Vitamin B <sub>1</sub>                               | (2) Vitamin B <sub>2</sub>                                | (4) $\frac{CH_3}{CH_3} > CH - CH_2 - CH_2 - O - COC_6H_5$                                                             |
|             | (3) Vitamin B <sub>12</sub>                              |                                                           | $(4)$ $CH_3$ $CH_2 = 0H_2 = 0 = 0006_6H_5$                                                                            |
| Ans         | . ,                                                      | ()                                                        | Ans. (3)                                                                                                              |
|             | • •                                                      | wing polymers is prepared by<br>n?                        | obtain highly pure metal which is liquid at ro                                                                        |
|             | (1) Novolac                                              | (2) Dacron                                                | temperature?                                                                                                          |
|             | (3) Teflon                                               | (4) Nylon-66                                              | (1) Distillation                                                                                                      |
| Ans         |                                                          |                                                           | (2) Zone refining                                                                                                     |
|             |                                                          | l contains 78%(by wt.) carbon                             | n (3) Electrolysis                                                                                                    |
|             | and remaining percenta                                   | ge of hydrogen. The right option                          | n (4) Chromatography                                                                                                  |
|             | •                                                        | mula of this compound is :                                | <sup>1</sup> Ans. (1)                                                                                                 |
|             | [Atomic wt. of C is 12                                   | -                                                         | 71. Identify the compound that will react with Hinsber                                                                |
|             | (1) CH <sub>3</sub>                                      | (2) CH <sub>4</sub>                                       | reagent to give a solid which dissolves in alkali.                                                                    |
|             | (3) CH                                                   | (4) CH <sub>2</sub>                                       | CH <sub>2</sub>                                                                                                       |
| Ans         | . ,                                                      | atable conformer of athens is .                           | (1) $CH_3$ $NH_2$                                                                                                     |
| 67.         | -                                                        | stable conformer of ethane is :                           | CH <sub>2</sub> CH <sub>2</sub>                                                                                       |
|             | (1) 60°                                                  | (2) 0°                                                    | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                       |
| _           | (3) 120°                                                 | (4) 180°                                                  | $(2)$ $I$ $CH_3$                                                                                                      |
| Ans         |                                                          |                                                           |                                                                                                                       |
| 68.         | Match List-I with List-I                                 |                                                           | (3) $CH_2 \sim \ddot{N}O_2$                                                                                           |
|             | List-I                                                   | List-II                                                   |                                                                                                                       |
|             | (A) PCl <sub>5</sub>                                     | (I) Square pyramidal                                      | (4) $CH_2 \xrightarrow{CH_2} NH \xrightarrow{CH_3}$                                                                   |
|             | (B) SF <sub>6</sub>                                      | (II) Trigonal planar                                      |                                                                                                                       |
|             | (C) BrF <sub>5</sub>                                     | (III) Octahedral                                          | Ans. (1)                                                                                                              |

#### NEET (UG)-2021 (Code : O3)

#### 72. Statement I :

Acid strength increases in the order given as HF << HCl << HBr << HI

#### Statement II :

As the size of the elements F, CI, Br, I increases down the group, the bond strength of HF, HCI, HBr and HI decreases and so the acid strength increases.

In the light of the above statements, choose the correct answer from the options given below.

- (1) Statement I is correct but Statement II is false
- (2) Statement I is incorrect but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

#### Ans. (3)

- 73. The pK<sub>b</sub> of dimethylamine and pK<sub>a</sub> of acetic acid are 3.27 and 4.77 respectively at T(K). The correct option for the pH of dimethylammonium acetate solution is :
  - (1) 7.75
  - (2) 6.25
  - (3) 8.50
  - (4) 5.50

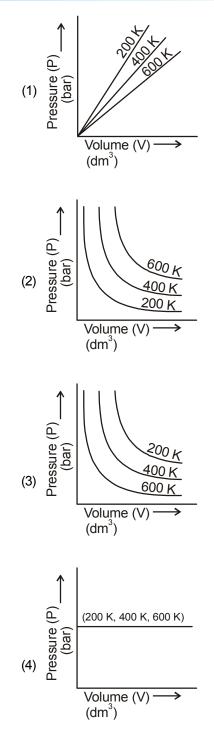
#### Ans. (1)

- 74. The molar conductance of NaCl, HCl and  $CH_3COONa$  at infinite dilution are 126.45, 426.16 and 91.0 S cm<sup>2</sup> mol<sup>-1</sup> respectively. The molar conductance of CH<sub>3</sub>COOH at infinite dilution is. Choose the right option for your answer.
  - (1) 698.28 S cm<sup>2</sup> mol<sup>-1</sup>
  - (2) 540.48 S cm<sup>2</sup> mol<sup>-1</sup>
  - (3) 201.28 S cm<sup>2</sup> mol<sup>-1</sup>
  - (4) 390.71 S cm<sup>2</sup> mol<sup>-1</sup>

#### Ans. (4)

- 75. The right option for the statement "Tyndall effect is exhibited by", is :
  - (1) Starch solution
  - (2) Urea solution
  - (3) NaCl solution
  - (4) Glucose solution

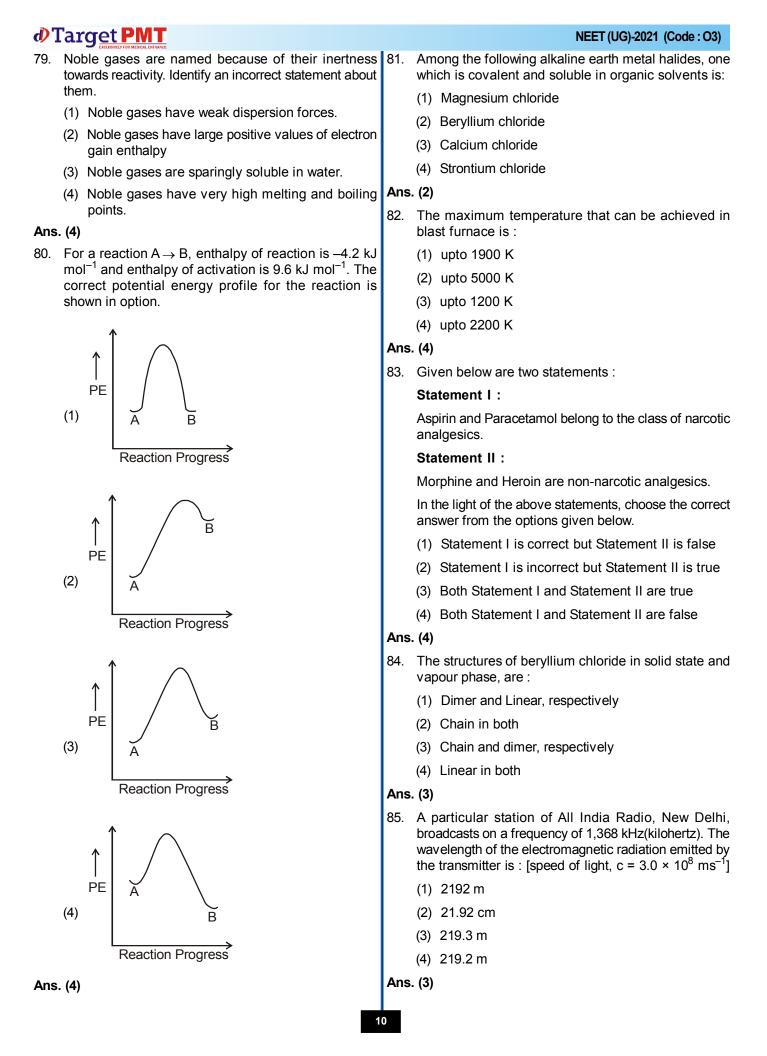
#### Ans. (1)


76. The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is :

| (1) | 2 |  | (2) | 3 |
|-----|---|--|-----|---|
|     |   |  |     |   |

(3) 7 (4) 5

#### Ans. (2)


77. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures.



#### Ans. (2)

- 78. The incorrect statement among the following is :
  - (1) Lanthanoids are good conductors of heat and electricity.
  - (2) Actinoids are highly reactive metals, especially when finely divided
  - (3) Actinoid contraction is greater for element to element than Lanthanoid contraction
  - (4) Most of the trivalent Lanthanoid ions are colorless in the solid state.

#### Ans. (4)



| NEET (UG)-2021 (Code : O3)                                                                                                                                                                                                                                                                                                            | Target PMT                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SECTION-B                                                                                                                                                                                                                                                                                                                             | 91. Match List-I with List-II                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>86. In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it?</li> <li>(1) NH<sub>3</sub> &lt; PH<sub>3</sub> : Increasing &lt; AsH<sub>3</sub> &lt; SbH<sub>3</sub> acidic character</li> </ul>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2) $CO_2 < SiO_2$ : Increasing<br>$< SnO_2 < PbO_2$ oxidizing power<br>(3) $HF < HCI$ : Increasing acidic<br>< HBr < HI strength<br>(4) $H_2O < H_2S$ : Increasing pK <sub>a</sub><br>$< H_2Se < H_2Te$ values<br>Ans (4)                                                                                                            | Choose the correct answer from the options given<br>below.<br>(1) $A \rightarrow (I), B \rightarrow (III), C \rightarrow (IV), D \rightarrow (II)$<br>(2) $A \rightarrow (IV), B \rightarrow (I), C \rightarrow (II), D \rightarrow (III)$<br>(3) $A \rightarrow (IV), B \rightarrow (II), C \rightarrow (I), D \rightarrow (III)$<br>(4) $A \rightarrow (II), B \rightarrow (IV), C \rightarrow (III), D \rightarrow (I)$<br>Ans. (2) |
| Ans. (4)<br>87. For irreversible expansion of an ideal gas under<br>isothermal condition, the correct option is :<br>(1) $\Delta U = 0$ , $\Delta S_{total} \neq 0$<br>(2) $\Delta U \neq 0$ , $\Delta S_{total} = 0$<br>(3) $\Delta U = 0$ , $\Delta S_{total} = 0$<br>(4) $\Delta U \neq 0$ , $\Delta S_{total} \neq 0$<br>Ans. (1) | 92 The correct option for the value of vapour pressure of                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>88. From the following pairs of ions which one is not an iso-electronic pair?</li> <li>(1) Mn<sup>2+</sup>, Fe<sup>3+</sup></li> <li>(2) Fe<sup>2+</sup>, Mn<sup>2+</sup></li> <li>(3) O<sup>2-</sup>, F<sup>-</sup></li> <li>(4) Na<sup>+</sup>, Mg<sup>2+</sup></li> </ul>                                                 | <ul> <li>(4) 168 mm of Hg</li> <li>Ans. (1)</li> <li>93. The reagent 'R' in the given sequence of chemical reaction is :</li> <li>Br H<sub>2</sub> Br NH<sub>2</sub> Br Br</li></ul>                                                                                                                                                                                                                  |
| Ans. (2)<br>89. $CH_3CH_2COO^-Na^+ \xrightarrow{NaOH,+?} Heat \rightarrow CH_3CH_3 + Na_2CO_3$<br>Consider the above reaction and identify the missing reagent/chemical.<br>(1) CaO<br>(2) DIBAL-H<br>(3) B_2H_6                                                                                                                      | $\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                    |
| (4) Red Phosphorus                                                                                                                                                                                                                                                                                                                    | List-I List-II                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Ans. (1)</li> <li>90. Which of the following molecules is non-polar in nature?</li> <li>(1) SbCl<sub>5</sub></li> <li>(2) NO<sub>2</sub></li> <li>(3) POCl<sub>3</sub></li> <li>(4) CH<sub>2</sub>O</li> </ul>                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ans. (1)                                                                                                                                                                                                                                                                                                                              | reaction                                                                                                                                                                                                                                                                                                                                                                                                                               |

- (C) R–CH<sub>2</sub>–OH + R'COOH Conc. H<sub>2</sub>SO<sub>4</sub>
- (III) Haloform reaction
- (D) R−CH<sub>2</sub>COOH (i) X<sub>2</sub>/Red P (ii) H<sub>2</sub>O

(IV) Esterification

Choose the correct answer from the options given below.

- (1)  $A \rightarrow (I), B \rightarrow (IV), C \rightarrow (III), D \rightarrow (II)$
- (2)  $A \rightarrow (II), B \rightarrow (III), C \rightarrow (IV), D \rightarrow (I)$
- (3)  $A \rightarrow (IV), B \rightarrow (I), C \rightarrow (II), D \rightarrow (III)$
- (4)  $A \rightarrow (III), B \rightarrow (II), C \rightarrow (I), D \rightarrow (IV)$

#### Ans. (2)

95. The molar conductivity of 0.007 M acetic acid is 20 S cm<sup>2</sup> mol<sup>-1</sup>. What is the dissociation constant of acetic acid? Choose the correct option

$$\begin{bmatrix} \wedge_{H^{+}}^{0} = 350 \, \text{S} \, \text{cm}^{2} \, \text{mol}^{-1} \\ \wedge_{CH_{3}COO^{-}}^{0} = 50 \, \text{S} \, \text{cm}^{2} \, \text{mol}^{-1} \end{bmatrix}$$
(1) 1.75 × 10<sup>-5</sup> mol L<sup>-1</sup>  
(2) 2.50 × 10<sup>-5</sup> mol L<sup>-1</sup>  
(3) 1.75 × 10<sup>-4</sup> mol L<sup>-1</sup>  
(4) 2.50 × 10<sup>-4</sup> mol L<sup>-1</sup>

#### Ans. (1)

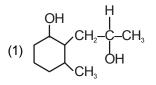
96. Choose the correct option for the total pressure (in atm.) in a mixture of 4g O<sub>2</sub> and 2g H<sub>2</sub> confined in a total volume of one litre at 0°C is :

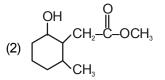
[Given R = 0.082 L atm mol<sup>-1</sup>K<sup>-1</sup>, T = 273 K]

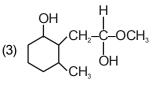
- (1) 25.18
- (2) 26.02
- (3) 2.518
- (4) 2.602

#### Ans. (1)

97. The slope of Arrhenius Plot  $\left(\frac{\ln k v}{s}\frac{1}{T}\right)$  of first order


reaction is  $-5 \times 10^3$ K. The value of E<sub>a</sub> of the reaction is. Choose the correct option for your answer.


 $[Given R = 8.314 JK^{-1}mol^{-1}]$ 


- (1) 166 kJ mol<sup>-1</sup>
- (2) -83 kJ mol<sup>-1</sup>
- (3) 41.5 kJ mol<sup>-1</sup>
- (4) 83.0 kJ mol<sup>-1</sup>
- Ans. (3)

98. The product formed in the following chemical reaction is :

$$CH_2 - C - OCH_3 \xrightarrow{NaBH_4}{C_2H_4OH}?$$







(4) 
$$CH_2-CH_2-OH$$
  
CH<sub>3</sub>

#### Ans. (2)

99. Match List-I with List-II

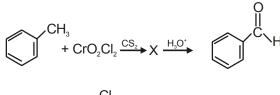
List-I List-II (A)  $2SO_2(g) + O_2(g) \rightarrow$  (I) Acid rain  $2SO_3(g)$ (B)  $HOCI(g) \xrightarrow{hv}$  (II) Smog

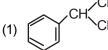
(B) HOCI(g)  $\xrightarrow{\text{nv}}$  (II) Smog

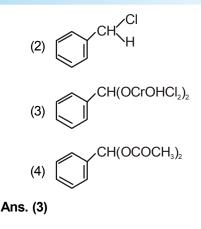
OH+CI

- (C)  $CaCO_3 + H_2SO_4 \rightarrow$  (III) Ozone  $CaSO_4 + H_2O + CO_2$  depletion
- (D)  $NO_2(g) \xrightarrow{hv}$  (IV) Tropospheric

NO(g) + O(g) pollution


Choose the correct answer from the options given below.


(1)  $A \rightarrow (IV), B \rightarrow (III), C \rightarrow (I), D \rightarrow (II)$ (2)  $A \rightarrow (III), B \rightarrow (II), C \rightarrow (IV), D \rightarrow (I)$ (3)  $A \rightarrow (I), B \rightarrow (II), C \rightarrow (III), D \rightarrow (IV)$ 


(4)  $A \rightarrow (II), B \rightarrow (III), C \rightarrow (IV), D \rightarrow (I)$ 

### NEET (UG)-2021 (Code: O3) 100. The intermediate compound 'X' in the following

chemical reaction is :







## BIOLOGY

#### SECTION-A (BOTANY)

- 101. When the centromere is situated in the middle of two equal arms of chromosomes, the chromosome is referred as :
  - (1) Sub-metacentric (2) Acrocentric
  - (3) Metacentric
- (4) Telocentric

#### Ans. (3)

102. In the equation GPP - R = NPP

R represents :

- (1) Environment factor
- (2) Respiration losses
- (3) Radiant energy
- (4) Retardation factor

## Ans. (2)

103. Match List - I with List - II.

|     | List - I                                                        | List - II |                        |
|-----|-----------------------------------------------------------------|-----------|------------------------|
| (a) | Cells with active cell division capacity                        | (i)       | Vascular<br>tissues    |
| (b) | Tissue having all cells<br>similar in structure<br>and function | (ii)      | Meristematic<br>tissue |
| (C) | Tissue having different types of cells                          | (iii)     | Sclereids              |
| (d) | Dead cells with highly thickened walls and narrow lumen         | (iv)      | Simple tissue          |

Select the **correct** answer from the options given below.

|     | (a)   | (b)   | (c)   | (d)   |
|-----|-------|-------|-------|-------|
| (1) | (i)   | (ii)  | (iii) | (iv)  |
| (2) | (iii) | (ii)  | (iv)  | (i)   |
| (3) | (ii)  | (iv)  | (i)   | (iii) |
| (4) | (iv)  | (iii) | (ii)  | (i)   |

Ans. (3)

- 104. Which of the following stages of meiosis involves division of centromere ?
  - (1) Anaphase II
  - (2) Telophase II
  - (3) Metaphase I
  - (4) Metaphase II

#### Ans. (1)

105. Match List - I with List - II.

|     | List - I   | List - II |                                                       |  |  |
|-----|------------|-----------|-------------------------------------------------------|--|--|
| (a) | Cristae    | (i)       | Primary constriction in<br>chromosome                 |  |  |
| (b) | Thylakoids | (ii)      | Disc-shaped sacs in<br>Golgi apparatus                |  |  |
| (C) | Centromere | (iii)     | Infoldings in<br>mitochondria                         |  |  |
| (d) | Cisternae  | (iv)      | Flattened membranous<br>sacs in stroma of<br>plastids |  |  |

Choose the **correct** answer from the options given below.

|     | (a)   | (b)   | (c)   | (d)  |
|-----|-------|-------|-------|------|
| (1) | (iii) | (iv)  | (i)   | (ii) |
| (2) | (ii)  | (iii) | (iv)  | (i)  |
| (3) | (i∨)  | (iii) | (ii)  | (i)  |
| (4) | (i)   | (iv)  | (iii) | (ii) |

## Ans. (1)

106. Diadelphous stamens are found in

- (1) Pea
- (2) China rose and citrus
- (3) China rose
- (4) Citrus

Ans. (1)

| <b>d</b> ) ] | Target PMT                                  |                                                                    |            |       |                   |           | NEE             | ET (UG)-20 | 21 (Code : O3)                 |
|--------------|---------------------------------------------|--------------------------------------------------------------------|------------|-------|-------------------|-----------|-----------------|------------|--------------------------------|
| 107.         |                                             | of pollen grains from anthers                                      |            | (3)   | 8-nucleate an     | d 7-celle | d               |            |                                |
|              |                                             | a different plant which, during<br>cally different types of pollen |            | (4)   | 7-nucleate an     | d 8-celle | d               |            |                                |
|              | grains to stigma, is :                      |                                                                    | Ans        | . (3) |                   |           |                 |            |                                |
|              | (1) Chasmogamy                              | (2) Cleistogamy                                                    | 115.       | The   | e first stable pr | oduct of  | CO <sub>2</sub> | fixation   | in sorghum is:                 |
|              | (3) Xenogamy                                | (4) Geitonogamy                                                    |            | • •   | Succinic acid     |           |                 |            |                                |
| Ans          | . (3)                                       |                                                                    |            |       | Phosphoglyce      | eric acid |                 |            |                                |
| 108.         |                                             | to destroy weeds in a field                                        |            | • •   | Pyruvic acid      |           |                 |            |                                |
|              |                                             |                                                                    |            | • •   | Oxaloacetic a     | cid       |                 |            |                                |
|              | (1) 2, 4-D                                  | (2) IBA                                                            | Ans        |       |                   |           |                 |            |                                |
| <b>A</b>     | (3) IAA                                     | (4) NAA                                                            | 116.       |       |                   |           |                 |            | response to<br>ferent kinds of |
| <b>Ans</b>   | .,                                          | algae contains mannitol as                                         |            |       | ictures. This a   |           |                 |            |                                |
| 109.         | reserve food material ?                     | aigae contains mannitor as                                         |            | (1)   | Plasticity        |           |                 |            |                                |
|              | (1) Volvox                                  | (2) Ulothrix                                                       |            | (2)   | Maturity          |           |                 |            |                                |
|              | (3) Ectocarpus                              | (4) Gracilaria                                                     |            | (3)   | Elasticity        |           |                 |            |                                |
| Ans          | . (3)                                       |                                                                    |            | (4)   | Flexibility       |           |                 |            |                                |
| 110.         | DNA strands on a gel sta                    | ained with ethidium bromide                                        | Ans        | . (1) |                   |           |                 |            |                                |
|              | when viewed under UV ra                     | adiation, appear as :                                              | 117.       | Ма    | tch List - I wit  | h List -  | II.             |            |                                |
|              | (1) Dark red bands                          | (2) Bright blue bands                                              |            |       | List - I          |           |                 | List - I   | I                              |
| _            | (3) Yellow bands                            | (4) Bright orange bands                                            |            | (a    | ) Protoplast f    | usion     | (i)             | Totipote   | ncy                            |
| Ans          | . ,                                         |                                                                    |            | (b    | ) Plant tissue    | culture   | (ii)            | Pomato     |                                |
| 111.         | in plants ?                                 | e <b>not</b> secondary metabolites                                 |            | (c    | ) Meristem cu     | Ilture    | (iii)           | Somacle    | ones                           |
|              | (1) Vinblastin, curcumin                    |                                                                    |            | (d    | ) Micropropa      | gation    | (iv)            | Virus fre  | e plants                       |
|              | (2) Rubber, gums                            |                                                                    |            | Ch    | bose the corr     | ect ansv  | ver f           | rom the    | options given                  |
|              | (3) Morphine, codeine                       |                                                                    |            | bel   | OW :              |           |                 |            |                                |
|              | (4) Amino acids, glucose                    | e                                                                  |            |       | (a)               | (b)       |                 | (c)        | (d)                            |
| Ans          | . (4)                                       |                                                                    |            | (1)   | (iii)             | (iv)      |                 | (i)        | (ii)                           |
| 112.         |                                             | ompetition in nature, which                                        |            | (2)   | (i∨)              | (iii)     |                 | (ii)       | (i)                            |
|              | mechanism the competing for their survival? | g species might have evolved                                       |            | (3)   | (iii)<br>(ii)     | (iv)      |                 | (ii)       | (i)                            |
|              | (1) Mutualism                               |                                                                    | Ano        | (4)   | (ii)              | (i)       |                 | (iv)       | (iii)                          |
|              | (2) Predation                               |                                                                    | <b>Ans</b> |       | ich of the foll   | wina is   | not             | an annli   | cation of PCR                  |
|              | (3) Resource partitioning                   | l                                                                  | 110.       |       | lymerase Cha      |           |                 |            |                                |
|              | (4) Competitive release                     |                                                                    |            | (1)   | Purification of   | isolated  | d pro           | tein       |                                |
| Ans          | ., .                                        |                                                                    |            | (2)   | Detection of g    | ene mu    | tatio           | า          |                                |
|              | Amensalism can be repr                      | esented as :                                                       |            | (3)   | Molecular dia     | gnosis    |                 |            |                                |
|              | (1) Species A ( – ) ; Spe                   | ecies B(一)                                                         |            | (4)   | Gene amplific     | ation     |                 |            |                                |
|              | (2) Species A (+); Spe                      | ecies B (0)                                                        | Ans        | . (1) |                   |           |                 |            |                                |
|              | (3) Species A ( – ) ; Spe                   | ecies B(0)                                                         | 119.       | Wh    | ich of the follo  | wing alg  | ae p            | roduce C   | arrageen?                      |
|              | (4) Species A (+); Spe                      | ecies B(+)                                                         |            | (1)   | Red algae         |           |                 |            |                                |
| Ans          | . (3)                                       |                                                                    |            | (2)   | Blue-green al     | jae       |                 |            |                                |
| 114.         | A typical angiosperm em                     | nbryo sac at maturity is :                                         |            | (3)   | Green algae       |           |                 |            |                                |
|              | (1) 7-nucleate and 7-cell                   | ed                                                                 |            | (4)   | Brown algae       |           |                 |            |                                |
|              | (2) 8-nucleate and 8-cell                   | ed                                                                 | Ans        | . (1) |                   |           |                 |            |                                |
|              |                                             |                                                                    | 1          |       |                   |           |                 |            |                                |

| NEE  | ET (U | G)-2021 (Code : O3)                                       |                    |                                                  |          |             |     |                    |           |       | <b>∂</b> Ta |                   | ANCE |
|------|-------|-----------------------------------------------------------|--------------------|--------------------------------------------------|----------|-------------|-----|--------------------|-----------|-------|-------------|-------------------|------|
| 120. |       |                                                           |                    | y the parents, formation                         | 126.     | Mu          | ıta | itions in plant of | cells ca  | an b  | e induc     | ced by :          |      |
|      |       | rygotes, the F <sub>1</sub> and I<br>n a diagram called : | F <sub>2</sub> pla | ints, can be understood                          |          | (1)         | Ģ   | Gamma rays         | (         | 2) Z  | Zeatin      |                   |      |
|      |       | Punnett square                                            | (2)                | Net square                                       |          | (3)         | K   | Kinetin            | (         | (4) I | nfrared     | rays              |      |
|      | • •   | Bullet square                                             | . ,                | Punch square                                     | Ans      | . (1)       |     |                    |           |       |             |                   |      |
| Ans. | • •   | Duner oquare                                              | (-)                | r unon oquare                                    | 127.     | Wh          | nic | ch of the follow   | /ing sta  | item  | ents is     | not correct?      |      |
|      | • •   | ich of the following i                                    | is an <b>i</b>     | incorrect statement ?                            |          | (1)         | F   | Pyramid of ene     | erav is a | alwa  | vs upri     | aht.              |      |
|      |       | •                                                         |                    | ms a barrier between the                         |          | • •         |     | •                  |           |       | •           | nd ecosystem      | is   |
|      | ( )   |                                                           |                    | the nucleus and that of                          |          | .,          | u   | pright.            |           | -     | -           | nerally inverted  |      |
|      | (2)   |                                                           |                    | ssage for proteins and                           |          | . ,         |     | -                  |           |       | -           | nerally upright.  |      |
|      |       | RNA molecules in bo<br>and cytoplasm.                     | oth dir            | ections between nucleus                          | <b>A</b> | • •         |     | yrannu or bior     | 11055 11  | 1 300 | a is yei    | ieraliy upriyrit. |      |
|      | (3)   |                                                           | lomor              | nts possess conspicuous                          | Ans      | • •         |     |                    |           |       |             |                   |      |
|      | (3)   | nucleus and usual of                                      |                    |                                                  | 128.     | Ма          | atc | h List - I with    | List -    | II.   |             |                   |      |
|      | (4)   | Microbodies are pre                                       | esent l            | both in plant and animal                         |          |             |     | List - I           |           |       | List        | - 11              |      |
|      |       | cells.                                                    |                    |                                                  |          | (a          | a)  | Lenticels          |           | (i)   | Phello      | ogen              |      |
| Ans. |       |                                                           |                    |                                                  |          | (b          | ))  | Cork cambiur       | n         | (ii)  | Suber       | in deposition     |      |
| 122. |       | mmae are present in                                       |                    |                                                  |          | (c          | ;)  | Secondary co       | ortex     | (iii) | Excha       | ange of gases     |      |
|      | • •   | Some Gymnosperm                                           | IS                 |                                                  |          | (d          | 1)  | Cork               |           | (iv)  | Phello      | oderm             |      |
|      | • •   | Some Liverwords                                           |                    |                                                  |          | Ch          | 00  | ose the correc     | t ansv    | ver f | rom th      | e options give    | en   |
|      | • •   | Mosses                                                    |                    |                                                  |          | bel         | lov | N :                |           |       |             |                   |      |
| Ans. | • •   | Pteridophytes                                             |                    |                                                  |          |             |     | (a)                | (b)       |       | (C)         | (d)               |      |
|      | • •   | nplete the flow chart                                     | t on c             | entral dogma                                     |          | (1)         |     | (ii)               | (iii)     |       | (iv)        | (i)               |      |
|      |       |                                                           |                    | -                                                |          | (2)         |     | (iv)               | (ii)      |       | (i)         | (iii)             |      |
|      | (a)   |                                                           | (c)                | ►(d)                                             |          | (3)         |     | (iv)               | (i)       |       | (iii)       | (ii)              |      |
|      | (1)   | (a)-Replication; (b)-1                                    | Franso             | cription;                                        |          | (4)         |     | (iii)              | (i)       |       | (iv)        | (ii)              |      |
|      |       | (c)-Translation; (d)-F                                    | Proteir            | ı                                                | Ans      | . (4)       |     |                    |           |       |             |                   |      |
|      | (2)   | (a)-Transduction; (b)                                     | )-Tran             | slation;                                         | 129.     | Th          | е   | site of perce      | eption    | of I  | ight ir     | n plants durin    | g    |
|      |       | (c)-Replcation; (d)-P                                     | rotein             | I                                                |          | pho         | oto | operiodism is :    |           |       |             |                   |      |
|      | (3)   | (a)-Replication; (b)-T                                    |                    |                                                  |          | (1)         | A   | Axillary bud       | (         | (2) L | eaf         |                   |      |
|      |       | (c)-Transduction; (d)                                     |                    |                                                  |          | (3)         | S   | Shoot apex         | (         | (4) 8 | Stem        |                   |      |
|      | (4)   | (a)-Translation; (b)-F                                    | -                  |                                                  | Ans      | . (2)       |     |                    |           |       |             |                   |      |
| Ans. | (1)   | (c)-Transcription; (d)                                    | )- I ran           | sduction                                         | 130.     | The<br>is : |     | factor that lead   | s to Fo   | unde  | er effec    | t in a populatio  | 'n   |
|      |       |                                                           |                    | rrect sequence of steps                          |          | (1)         | Ν   | Autation           |           |       |             |                   |      |
|      |       | PCR (Polymerase (                                         |                    | ,                                                |          | (2)         | Ģ   | Genetic drift      |           |       |             |                   |      |
|      | • •   | Extension, Denatura                                       |                    | -                                                |          | (3)         |     | Natural selectio   | n         |       |             |                   |      |
|      |       | Annealing, Denatura                                       |                    |                                                  |          | (4)         |     | Genetic recomb     |           | n     |             |                   |      |
|      | • •   | Denaturation, Annea                                       | -                  |                                                  | Ans      | ( )         |     |                    | , and a   | •     |             |                   |      |
| Ans. | • •   | Denaturation, Exten                                       | 501, /             | Annealing                                        |          |             |     | amount of nut      | rionte    | 8110  | h as c      | arbon, nitroger   | n    |
| 125. | Dur   | • • •                                                     |                    | ss for recombinant DNA ethanol precipitates out: |          | pho         | os  |                    | alcium    | pres  |             | the soil at an    |      |
|      |       | Histones                                                  |                    | Polysaccharides                                  |          | (1)         | S   | Standing state     | (         | 2) 8  | Standin     | g crop            |      |
|      | (3)   | RNA                                                       | (4)                | DNA                                              |          | (3)         | С   | Climax             | (         | (4)   | Climax      | community         |      |
| Ans. | (4)   |                                                           |                    |                                                  | Ans      | . (1)       | 1   |                    |           |       |             |                   |      |
|      |       |                                                           |                    | _                                                |          |             |     |                    |           |       |             |                   |      |

#### 132. Match List - I with List - II.

|     | List - I        |       | List - II                                  |
|-----|-----------------|-------|--------------------------------------------|
| (a) | Cohesion        | (i)   | More attraction in<br>liquid phase         |
| (b) | Adhesion        | (ii)  | Mutual attraction among<br>water molecules |
| (C) | Surface tension | (iii) | Water loss in liquid phase                 |
| (d) | Guttation       | (iv)  | Attraction towards polar surfaces          |

Choose the correct answer from the options given below.

|     | (a)   | (b)   | (C)  | (d)   |
|-----|-------|-------|------|-------|
| (1) | (iii) | (i)   | (iv) | (ii)  |
| (2) | (ii)  | (i)   | (iv) | (iii) |
| (3) | (ii)  | (iv)  | (i)  | (iii) |
| (4) | (iv)  | (iii) | (ii) | (i)   |

#### Ans. (3)

- 133. When gene targetting involving gene amplification is attempted in an individual's tissue to treat disease, it is known as :
  - (1) Molecular diagnosis (2) Safety testing
  - (4) Gene therapy (3) Biopiracy

#### Ans. (4)

- 134. Genera like Selaginella and Salvinia produce two kinds of spores. Such plants are known as :
  - (1) Homosporous
  - (2) Heterosporous
  - (3) Homosorus
  - (4) Heterosorus

#### Ans. (2)

- 135. Which of the following plants is monoecious ?
  - (1) Marchantia polymorpha
  - (2) Cycas circinalis
  - (3) Carica papaya
  - (4) Chara

#### Ans. (4)

#### SECTION-B (BIOLOGY : BOTANY)

136. What is the role of RNA polymerase III in the process of transcription in eukaryotes?

- Transcribes precursor of mRNA
- (2) Transcribes only snRNAs
- (3) Transcribes rRNAs (28S, 18S and 5.8S)
- (4) Transcribes tRNA, 5s rRNA and snRNA

Ans. (4)

137. Which of the following statements is correct?

- (1) Organisms that depend on living plants are called saprophytes.
- (2) Some of the organisms can fix atmospheric nitrogen in specialized cells called sheath cells.
- (3) Fusion of two cells is called Karyogamy.

138. Match Column - I with Column - II.

(4) Fusion of protoplasms between two motile on nonmotile gametes is called plasmogamy.

#### Ans. (4)

#### Column - I Column - II (i) Denitrification Nitrococcus (a) Conversion of (b) (ii) Rhizobium ammonia to nitrite (iii) Conversion of nitrite (C) Thiobacillus to nitrate (d) Conversion of (iv) Nitrobacter atmospheric nitrogen to ammonia

Choose the **correct** answer from options given below.

|     | (a)   | (b)   | (C)   | (d)   |
|-----|-------|-------|-------|-------|
| (1) | (iii) | (i)   | (iv)  | (ii)  |
| (2) | (iv)  | (iii) | (ii)  | (i)   |
| (3) | (ii)  | (iv)  | (i)   | (iii) |
| (4) | (i)   | (ii)  | (iii) | (iv)  |

#### Ans. (3)

- 139. Plasmid pBR322 has Pstl restriction enzyme site within gene amp<sup>R</sup> that confers ampicillin resistance. If this enzyme is used for inserting a gene for β-galactoside production and the recombinant plasmid is inserted in an E.coli strain
  - it will lead to lysis of host cell.
  - (2) it will be able to produce a novel protein with dual ability.
  - (3) it will not be able to confer ampicillin resistance to the host cell.
  - (4) the transformed cells will have the ability to resist ampicillin as well as produce  $\beta$ -galactoside.

Column-II

#### Ans. (3)

#### 140. Match Column - I with Column - II.

Column-I

# (a) $\% \overset{\mathbf{A}}{\not{P}}_{K_{(5)}C_{1+2+(2)}A_{(9)+1}\underline{G}_{1}}$ (b) $\oplus \overset{\mathbf{A}}{\not{P}}_{K_{(5)}C_{(5)}A_{5}\underline{G}_{2}}$ (c) $\oplus \overset{\mathbf{A}}{\not{P}}_{P_{(3+3)}A_{3+3}\underline{G}_{(3)}}$ (i) Brassicaceae

- (ii) Liliaceae
- (iii) Fabaceae

#### NEET (UG)-2021 (Code : O3)

#### NEET (UG)-2021 (Code : O3)

(iv) Solanaceae

Select the **correct** answer from the options given below.

|     | (a)   | (b)   | (C)   | (d)   |
|-----|-------|-------|-------|-------|
| (1) | (ii)  | (iii) | (iv)  | (i)   |
| (2) | (iv)  | (ii)  | (i)   | (iii) |
| (3) | (iii) | (iv)  | (ii)  | (i)   |
| (4) | (i)   | (ii)  | (iii) | (iv)  |

#### Ans. (3)

#### 141. Which of the following statements is incorrect?

- (1) ATP is synthesized through complex V.
- (2) Oxidation-reduction reactions produces proton gradient in respiration.
- (3) During aerobic respiration, role of oxygen is limited to the terminal stage.
- (4) In ETC (Electron Transport Chain), one molecule of NADH +  $H^+$  gives rise to 2 ATP molecules, and one FADH<sub>2</sub> gives rise to 3 ATP molecules.

#### Ans. (4)

142. Match List - I with List - II.

| List - I |                        |       | List - II            |
|----------|------------------------|-------|----------------------|
| (a)      | Protein                | (i)   | C = C double bonds   |
| (b)      | Unsaturated fatty acid | (ii)  | Phosphodiester bonds |
| (C)      | Nucleic acid           | (iii) | Glycosidic bonds     |
| (d)      | Polysaccharide         | (iv)  | Peptide bonds        |

Choose the **correct** answer from the options given below.

|     | (a)  | (b)   | (C)   | (d)   |
|-----|------|-------|-------|-------|
| (1) | (ii) | (i)   | (iv)  | (iii) |
| (2) | (iv) | (iii) | (i)   | (ii)  |
| (3) | (iv) | (i)   | (ii)  | (iii) |
| (4) | (i)  | (iv)  | (iii) | (ii)  |

#### Ans. (3)

- 143. DNA fingerprinting involves identifying differences in some specific regions in DNA sequence, called as :
  - (1) Single nucleotides
  - (2) Polymorphic DNA
  - (3) Satellite DNA
  - (4) Repetitive DNA

#### Ans. (4)

#### 144. Match List - I with List - II

|     | List - I             | List - II |                                                                  |  |
|-----|----------------------|-----------|------------------------------------------------------------------|--|
| (a) | S phase              | (i)       | Proteins are<br>synthesized                                      |  |
| (b) | G <sub>2</sub> phase | (ii)      | Inactive phase                                                   |  |
| (C) | Quiescent stage      | (iii)     | Interval between<br>mitosis and initiation of<br>DNA replication |  |
| (d) | G₁ phase             | (iv)      | DNA replication                                                  |  |

Choose the **correct** answer from the options given below.

|     | (a)   | (b)  | (c)   | (d)   |
|-----|-------|------|-------|-------|
| (1) | (iv)  | (i)  | (ii)  | (iii) |
| (2) | (ii)  | (iv) | (iii) | (i)   |
| (3) | (iii) | (ii) | (i)   | (iv)  |
| (4) | (iv)  | (ii) | (iii) | (i)   |

Ans. (1)

145. Identify the correct statement.

- (1) The coding strand in a transcription unit is copied to an mRNA.
- (2) Split gene arrangement is characteristic of prokaryotes.
- (3) In capping, methyl guanosine triphosphate is added to the 3' end of hnRNA.
- (4) RNA polymerase binds with Rho factor to terminate the process of transcription in bacteria.

#### Ans. (4)

#### 146. Select the correct pair.

| (1) | Cells of medullary rays | - | Interfascicular |  |  |
|-----|-------------------------|---|-----------------|--|--|
|     | that form part of       |   | cambium         |  |  |
|     | cambial ring            |   |                 |  |  |

- (2) Loose parenchyma cells Spongy
   rupturing the epidermis parenchyma
   and forming a lens shaped opening in bark
- (3) Large colorless empty Subsidiary cells cells in the epidermis of grass leaves
- (4) In dicot leaves, vascular Conjunctive
   bundles are surrounded tissue
   by large thick-walled cells

#### Ans. (1)

147. Which of the following statements is incorrect?

- (1) Grana lamellae have both PS I and PS II.
- (2) Cyclic photophosphorylation involves both PS I and PS II.

| ∂Targ <u>et <b>PMT</b></u>                                                                           | NEET (UG)-2021 (Code : O3)                                                                             |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| (3) Both ATP and NADPH + $H^+$ are synthesized during                                                |                                                                                                        |
| non-cyclic photophosphorylation.                                                                     | be percentage of Thymine, Guanine and Cytosine in it?                                                  |
| (4) Stroma lamellae have PS I only and lack NADP<br>reductase.                                       | (1) T : 30 ; G : 20 ; C : 20                                                                           |
| Ans. (2)                                                                                             | (2) T : 20 ; G : 25 ; C : 25                                                                           |
| 148. Now a days it is possible to detect the mutated gene                                            | (3) T : 20 ; G : 30 ; C : 20                                                                           |
| causing cancer by allowing radioactive probe to                                                      | (4) T : 20 ; G : 20 ; C : 30                                                                           |
| hybridise its complimentary DNA in a clone of cells, followed by its detection using autoradiography | Ans. (1)                                                                                               |
| because :                                                                                            | 153. Which one of the following is an example of Hormone                                               |
| (1) Mutated gene does not appear on a photographic                                                   | releasing IUD?                                                                                         |
| film as the probe has no complimentarity with it.                                                    | (1) Cu 7 (2) Multiload 375                                                                             |
| (2) Mutated gene does not appear on photographic<br>film as the probe has complimentarity with it.   | (3) CuT (4) LNG 20                                                                                     |
| (3) Mutated gene partially appears on a photographic                                                 | Ans. (4)                                                                                               |
| film.                                                                                                | 154. Which of the following characteristics is <b>incorrect</b> with respect to cockroach?             |
| (4) Mutated gene completely and clearly appears on<br>a photographic film.                           | <ol> <li>In females, 7<sup>th</sup>-9<sup>th</sup> sterna together form a genital<br/>pouch</li> </ol> |
| Ans. (1)                                                                                             | (2) 10th abdominal segment in both sexes, bear a pair                                                  |
| 149. In the exponential growth equation $N_t = N_0 e^{rt}$ , e represents :                          | of anal cerci                                                                                          |
| (1) The base of natural logarithms                                                                   | (3) A ring of gastric caeca is present at the junction<br>of midgut and hind gut                       |
| (2) The base of geometric logarithms                                                                 | (4) Hypopharynx lies within the cavity enclosed by the                                                 |
| (3) The base of number logarithms                                                                    | mouth parts                                                                                            |
| (4) The base of exponential logarithms                                                               | Ans. (3)                                                                                               |
| Ans. (1)                                                                                             | 155. Identify the <b>incorrect</b> pair                                                                |
| 150. In some members of which of the following pairs of                                              | (1) Lectins – Concanavalin A                                                                           |
| families, pollen grains retain their viability for months                                            | (2) Drugs – Ricin                                                                                      |
| after release ?                                                                                      | (3) Alkaloids – Codeine                                                                                |
| <ul> <li>(1) Poaceae ; Solanaceae</li> <li>(2) Deceases : Leguminoceae</li> </ul>                    | (4) Toxin – Abrin                                                                                      |
| (2) Rosaceae ; Leguminosae                                                                           | Ans. (2)                                                                                               |
| <ul><li>(3) Poaceae ; Rosaceae</li><li>(4) Poaceae ; Leguminosae</li></ul>                           | 156. Veneral diseases can spread through                                                               |
| Ans. (2)                                                                                             | (a) Using sterile needles                                                                              |
| SECTION-A (BIOLOGY : ZOOLOGY)                                                                        | (b) Transfusion of blood from infected person                                                          |
| 151. Match List-I with List-II                                                                       | (c) Infected mother to foetus                                                                          |
| List-I List-II                                                                                       | (d) Kissing<br>(e) Inheritance                                                                         |
| (a) Aspergillus niger (i) Acetic acid                                                                | Choose the <b>correct</b> answer from the options given                                                |
| (b) Acetobacter aceti (ii) Lactic acid                                                               | below                                                                                                  |
| (c) Clostridium butylicum (iii) Citric acid                                                          | (1) (b) and (c) only (2) (a) and (c) only                                                              |
| (d) <i>Lactobacillus</i> (iv) Butyric acid                                                           | (3) (a), (b) and (c) only (4) (b), (c) and (d) only                                                    |
| Choose the <b>correct</b> answer from the options given below                                        | <b>Ans. (1)</b><br>157. Chronic auto immune disorder affecting neuro muscular                          |
| (1) (a)-ii, (b)-iii, (c)-i, (d)-iv<br>(2) (a)-iv, (b)-ii, (c)-i, (d)-iii                             | junction leading to fatigue, weakening and paralysis of skeletal muscle is called as                   |
| (3) (a)-iii, (b)-i, (c)-iv, (d)-ii                                                                   | (1) Myasthenia gravis (2) Gout                                                                         |
| (4) (a)-i, (b)-ii, (c)-iii, (d)-iv                                                                   | (3) Arthritis (4) Muscular dystrophy                                                                   |
| Ans. (3)                                                                                             | Ans. (1)                                                                                               |
|                                                                                                      |                                                                                                        |
| 1                                                                                                    | 8                                                                                                      |

| NE       | ET (U       | G)-2021 (Code : O3)                             |                       |            |      |            |                                                  |            |                              |
|----------|-------------|-------------------------------------------------|-----------------------|------------|------|------------|--------------------------------------------------|------------|------------------------------|
| 158.     | Wit         | h regard to insulin ch                          | noose correct optio   | ns         | 164. | Ma         | tch List-I with List-II                          |            |                              |
|          | (a)         | C-peptide is not pres                           | sent in mature insu   | lin        |      |            | List-I                                           |            | List-II                      |
|          | (b)         | The insulin produce                             | ed by rDNA techno     | ology has  |      | (a)        | Metamerism                                       | (i)        | Coelenterata                 |
|          |             | C-peptide                                       |                       |            |      | (b)        | Canal system                                     | (ii)       | Ctenophora                   |
|          | (C)         | The pro-insulin has (                           | C-peptide             |            |      | (C)        | Comb plates                                      | (iii)      | Annelida                     |
|          | (d)         | A-peptide and B interconnected by di            |                       | ulin are   |      | • •        | Cnidoblasts                                      | • •        | Porifera                     |
|          | Cho<br>belo | pose the correct and                            |                       | ons given  |      | belo       | W                                                |            | from the options given       |
|          | (1)         | (a), (c) and (d) only                           |                       |            |      |            | (a)-iii, (b)-iv, (c)-ii, (d                      |            |                              |
|          | (2)         | (a) and (d) only                                |                       |            |      | (2)        | (a)-iv, (b)-i, (c)-ii, (d)-                      |            |                              |
|          | (3)         | (b) and (d) only                                |                       |            |      |            | (a)-iv, (b)-iii, (c)-i, (d)                      |            |                              |
|          |             | (b) and (c) only                                |                       |            |      |            | (a)-iii, (b)-iv, (c)-i, (d)                      | )-ii       |                              |
| Ans.     |             |                                                 |                       |            | Ans. |            |                                                  |            |                              |
|          | Wh          | ich the following state<br>ure of smooth muscle |                       | esents the | 165. |            | ich stage of meiotic p<br>hiasmata as its distin | nctiv      |                              |
|          | (1)         | Communication amo                               | ong the cells is perf | ormed by   |      | (1)        | Diakinesis                                       | (2)        | Pachytene                    |
|          | ( )         | intercalated discs                              | 5                     | ,          |      | (3)        | Leptotene                                        | (4)        | Zygotene                     |
|          | (2)         | These muscles are                               | present in the wal    | l of blood | Ans. | (1)        |                                                  |            |                              |
|          |             | vessels                                         |                       |            | 166. |            | son with 'AB' blood g                            |            | are called as "Universal     |
|          | • •         | These muscle have                               |                       |            |      |            |                                                  |            | nti-A and anti-B, on RBCs    |
| _        | (4)         | They are involuntary                            | muscles               |            |      |            |                                                  |            | , anti-A and anti-B, in      |
| Ans.     |             |                                                 |                       |            |      | (2)        | plasma                                           | uies       | , anti-A and anti-D, m       |
| 160.     |             | e centriole undergoes                           |                       |            |      | (3)        | Absence of antigen                               | s A a      | and B on the surface of      |
|          | • •         | Metaphase                                       | (2) $G_2$ phase       |            |      |            | RBCs                                             |            |                              |
| _        | • •         | S-phase                                         | (4) Prophase          |            |      | (4)        | Absence of antigens                              | s A a      | ind B in plasma              |
| Ans.     | • •         |                                                 |                       |            | Ans. | (2)        |                                                  |            |                              |
| 161.     |             | oson units are used t                           |                       | ss of      | 167. |            |                                                  |            | Hg) of oxygen $(O_2)$ and    |
|          | • •         | Ozone                                           | (2) Troposphere       |            |      | car<br>are | bon dioxide (CO <sub>2</sub> ) at                | alve       | eoli (the site of diffusion) |
| _        | • •         | CFCs                                            | (4) Stratosphere      |            |      |            | $pO_2 = 95$ and $pCO_2$                          | . = 4      | 0                            |
| Ans.     |             |                                                 |                       |            |      | • •        | $pO_2 = 159$ and $pCO_2$                         | -          |                              |
| 162.     |             | e organelles that are in<br>tem are             | icluded in the endor  | nembrane   |      | • •        | $pO_2 = 103$ and $pOC_2 = 104$ and $pCC_2 = 104$ | _          |                              |
|          |             | Golgi complex, Mit                              | ochondria Ribosc      | mes and    |      | • •        | $pO_2 = 40$ and $pCO_2$                          | -          |                              |
|          | (1)         | Lysosomes                                       |                       |            | Ans. | • •        | p02 - 40 and p002                                | <u>-</u> - | 5                            |
|          | (2)         | Golgi complex,<br>Mitochondria and Ly           |                       | eticulum,  |      | Suc        | ccus entericus is refe                           | erred      | to as                        |
|          | (3)         | Endoplasmic reticulu                            |                       | ibosomes   |      |            | Gastric juice                                    |            |                              |
|          | ( )         | and Lysosomes                                   |                       |            |      | • •        | Chyme                                            |            |                              |
|          | (4)         | Endoplasmic reti                                | -                     | complex,   |      | • •        | Pancreatic juice                                 |            |                              |
|          |             | Lysosomes and Vac                               | uoles                 |            |      | . ,        | Intestinal juice                                 |            |                              |
| Ans. (4) |             |                                                 |                       | Ans.       | • •  |            |                                                  |            |                              |
| 163.     |             | ich of the following f thesis of protein?       | RNAs is not require   | ed for the | 169. | Red<br>on  | eptors for sperm bin                             | ding       | in mammals are present       |
|          | • •         | rRNA                                            | (2) siRNA             |            |      | (1)        | Perivitelline space                              | (2)        | Zona pellucida               |
|          | (3)         | mRNA                                            | (4) tRNA              |            |      | (3)        | Corona radiata                                   | (4)        | Vitelline membrane           |
| Ans.     | (2)         |                                                 |                       |            | Ans. | (2)        |                                                  |            |                              |
|          |             |                                                 |                       | _1         | 9    |            |                                                  |            |                              |
|          |             |                                                 |                       |            |      |            |                                                  |            |                              |

| ∂Targ <u>et <b>PMT</b></u>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEET (UG)-2021 (Code : O3)                                                                                    |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 170. Match the following                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175. Which of the following belongs to the family Muscidae?                                                   |
| List-I                                               | List-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1) Cockroach (2) House fly                                                                                   |
| (a) <i>Physalia</i>                                  | (i) Pearl oyster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3) Fire fly (4) Grasshopper                                                                                  |
| (b) <i>Limulus</i>                                   | (ii) Portuguese Man of V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /ar Ans. (2)                                                                                                  |
| (c) Ancylostoma                                      | (iii) Living fossil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 176. The fruit fly has 8 chromosomes (2n) in each cell.                                                       |
| (d) <i>Pinctada</i>                                  | (iv) Hookworm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | During interphase of Mitosis if the number of chromosomes at $G_1$ phase is 8, what would be the              |
| (1) (a)-ii, (b)-iii, (c)-iv,                         | (d)-i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | number of chromosomes after S phase?                                                                          |
| (2) (a)-i, (b)-iv, (c)-iii, (                        | (d)-ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) 4 (2) 32                                                                                                  |
| (3) (a)-ii, (b)-iii, (c)-i, (                        | d)-iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3) 8 (4) 16                                                                                                  |
| (4) (a)-iv, (b)-i, (c)-iii, (                        | (d)-ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ans. (3)                                                                                                      |
| Ans. (1)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177. Which of the following is <b>not</b> an objective of                                                     |
|                                                      | h a male and female, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |
|                                                      | kle cell anaemia gene, w<br>geny will be diseased?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2) Improve micronutrient and mineral content                                                                 |
| (1) 25%                                              | (2) 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3) Improve protein content                                                                                   |
| (3) 50%                                              | (4) 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4) Improve resistance to disease                                                                             |
| Ans. (1)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ans. (4)                                                                                                      |
| 172. Read the following sta                          | tements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178. A specific recognition sequence identified by                                                            |
| (a) Metagenesis is ob                                | served in Helminths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | endonucleases to make cuts at specific positions within                                                       |
|                                                      | e triploblastic and coelom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the DNA is (1) Polindromia Nucleotido acquences                                                               |
| animals                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul><li>(1) Palindromic Nucleotide sequences</li><li>(2) Poly(A) tail sequences</li></ul>                     |
| (c) Round worms hav<br>organization                  | ve organ-system level of b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3) Degenerate primer sequence                                                                                |
| -                                                    | esent in ctenophores help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |
| digestion                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ans. (1)                                                                                                      |
| . ,                                                  | system is characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |
| Echinoderms                                          | nower from the entione si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | List-I List-II                                                                                                |
| below                                                | answer from the options given the options given the option of the option | (a) Vaults (i) Entry of sperm through                                                                         |
| (1) (a), (d) and (e) are                             | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cervix is blocked                                                                                             |
| (2) (b), (c) and (e) are                             | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b) IUDs (ii) Removal of Vas deferens                                                                         |
| (3) (c), (d) and (e) are                             | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c) Vasectomy (iii) Phagocytosis of sperms                                                                    |
| (4) (a), (b) and (c) are                             | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | within the Uterus                                                                                             |
| Ans. (2)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) Tubectomy (iv) Removal of fallopian                                                                       |
| 173. Sphincter of oddi is pr                         | esent in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tube                                                                                                          |
| (1) Gastro-oesophage                                 | al junction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Choose the <b>correct</b> answer from the options given below                                                 |
| (2) Junction of jejunur                              | n and duodenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1) (a)-ii, (b)-iv, (c)-iii, (d)-i                                                                            |
| (3) Ileo-caecal junctio                              | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2) (a)-iii, (b)-i, (c)-iv, (d)-ii                                                                            |
| (4) Junction of hepato                               | -pancreatic duct and duoder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |
| Ans. (4)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4) (a)-i, (b)-iii, (c)-ii, (d)-iv                                                                            |
| 174. Which enzymes is res<br>inactive fibrinogens to | sponsible for the conversion fibrins?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul><li><sup>of</sup> Ans. (4)</li><li>180. For effective treatment of the disease, early diagnosis</li></ul> |
| (1) Epinephrine                                      | (2) Thrombokinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and understanding its pathophysiology is very                                                                 |
| (3) Thrombin                                         | (4) Renin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | important. Which of the following molecular diagnostic techniques is very useful for early detection?         |
| Ans. (3)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | techniques is very useful for early detection?                                                                |

| NEET (UG)-2021 (Code : O3)                                                                                                                                  | Target PMT                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| (1) ELISA Technique                                                                                                                                         | 187. The Adenosine deaminase deficiency results into                                                                                    |
| (2) Hybridization Technique                                                                                                                                 | (1) Digestive disorder                                                                                                                  |
| (3) Western Blotting Technique                                                                                                                              | (2) Addison's disease                                                                                                                   |
| (4) Southern Blotting Technique                                                                                                                             | (3) Dysfunction of Immune system                                                                                                        |
| Ans. (1)                                                                                                                                                    | (4) Parkinson's disease                                                                                                                 |
| 181. Select the favourable conditions required for the                                                                                                      | Ans. (3)                                                                                                                                |
| formation of oxyhaemoglobin at the alveoli                                                                                                                  | 188. Which of these is not an important component of initiation of parturition in humans?                                               |
| (1) High $pO_2$ , high $pCO_2$ , less H <sup>+</sup> , higher temperature                                                                                   | (1) Release of Oxytocin                                                                                                                 |
| (2) Low $pO_2$ , low $pCO_2$ , more $H^+$ , higher temperature                                                                                              | (2) Release of Prolactin                                                                                                                |
| (3) High $pO_2$ , low $pCO_2$ , less H <sup>+</sup> , lower temperature                                                                                     | (3) Increase in estrogen and progesterone ratio                                                                                         |
| (4) Low $pO_2$ , high $pCO_2$ , more $H^+$ , higher temperature                                                                                             | (4) Synthesis of prostaglandins                                                                                                         |
| Ans. (3)                                                                                                                                                    | Ans. (2)                                                                                                                                |
| 182. During the process of gene amplification using PCR, if very high temperature is not maintained in the baging then which of the following stops of PCP. | 189. Which one of the following statements about Histones is <b>wrong</b> ?                                                             |
| <ul><li>beginning, then which of the following steps of PCR will be affected first?</li><li>(1) Departmention</li><li>(2) Lingting</li></ul>                | (1) Histones are rich in amino acids-Lysine and Arginine                                                                                |
| (1) Denaturation (2) Ligation                                                                                                                               | (2) Histones carry positive charge in the side chain                                                                                    |
| (3) Annealing (4) Extension Ans. (1)                                                                                                                        | (3) Histones are organized to form a unit of 8<br>molecules                                                                             |
| 183. Which is the "Only enzyme" that has "Capability" to                                                                                                    | (4) The pH of histones is slightly acidic                                                                                               |
| catalyse Initiation, Elongation and Termination in the process of transcription in prokaryotes?                                                             | Ans. (4)                                                                                                                                |
| (1) DNA Ligase                                                                                                                                              | 190. Statement I:                                                                                                                       |
| (2) DNase                                                                                                                                                   | The codon 'AUG' codes for methionine and phenylalanine.                                                                                 |
| (3) DNA dependent DNA polymerase                                                                                                                            | Statement II:                                                                                                                           |
| (4) DNA dependent RNA polymerase                                                                                                                            | 'AAA' and 'AAG' both codons code for the amino acid                                                                                     |
|                                                                                                                                                             | lysine.                                                                                                                                 |
| <ul><li>Ans. (4)</li><li>184. Which one of the following organisms bears hollow and</li></ul>                                                               | In the light of the above statements, choose the                                                                                        |
| pneumatic long bones?                                                                                                                                       |                                                                                                                                         |
| (1) Macropus (2) Ornithorhynchus                                                                                                                            | <ul> <li>(1) Statement I is correct but Statement II is false</li> <li>(2) Statement I is incorrect but Statement II is true</li> </ul> |
| (3) Neophron (4) Hemidactylus                                                                                                                               | <ul> <li>(2) Statement I is incorrect but Statement II is true</li> <li>(3) Both Statement I and Statement II are true</li> </ul>       |
| Ans. (3)                                                                                                                                                    | (4) Both Statement I and Statement II are false                                                                                         |
| 185. Erythropoietin hormone which stimulates R.B.C.                                                                                                         | Ans. (2)                                                                                                                                |
| formation is produced by                                                                                                                                    | 191. Following are the statements with reference to 'lipids'                                                                            |
| (1) The cells of bone marrow                                                                                                                                | (a) Lipids having only single bonds are called                                                                                          |
| (2) Juxtaglomerular cells of the kidney                                                                                                                     | unsaturated fatty acids                                                                                                                 |
| (3) Alpha cells of pancreas                                                                                                                                 | (b) Lecithin is a phospholipid                                                                                                          |
| (4) The cells of rostral adenohypophysis                                                                                                                    | (c) Trihydroxy propane is glycerol                                                                                                      |
| Ans. (2)<br>SECTION-B (BIOLOGY: ZOOLOGY)                                                                                                                    | (d) Palmitic acid has 20 carbon atoms including carboxyl carbon                                                                         |
| 186. Which of the following secretes the hormone, relaxin,                                                                                                  | (e) Arachidonic acid has 16 carbons atoms                                                                                               |
| during the later phase of pregnancy?                                                                                                                        | Choose the <b>correct</b> answer from the options given below                                                                           |
| (1) Foetus (2) Uterus                                                                                                                                       | (1) (b) and (c) only (2) (b) and (e) only                                                                                               |
| (3) Graafian follicle (4) Corpus luteum                                                                                                                     | (3) (a) and (b) only (4) (c) and (d) only                                                                                               |
| Ans. (4)                                                                                                                                                    | Ans. (1)                                                                                                                                |
|                                                                                                                                                             | 1                                                                                                                                       |

| <b>d</b> ] | ar                                                          | get <b>PMT</b>                                 |             |                                                               |                                                                                                                   |                                    |                                       | N        | EET (UG)-2021 (Code : O3)                         |  |
|------------|-------------------------------------------------------------|------------------------------------------------|-------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|----------|---------------------------------------------------|--|
| 192.       | 192. Following are statements about prostomium of earthworm |                                                |             | Choose the <b>correct</b> answer from the options given below |                                                                                                                   |                                    |                                       |          |                                                   |  |
|            | (a) It serves as a covering for mouth                       |                                                |             | (1)                                                           | (a)-iv, (b)-ii, (c)-iii,                                                                                          |                                    |                                       |          |                                                   |  |
|            | (b) It helps to open cracks in the soil into which it can   |                                                |             |                                                               | (2)                                                                                                               | (2) (a)-iv, (b)-iii, (c)-ii, (d)-i |                                       |          |                                                   |  |
|            | crawl                                                       |                                                |             |                                                               |                                                                                                                   | (3) (a)-i, (b)-iii, (c)-ii, (d)-iv |                                       |          |                                                   |  |
|            | • •                                                         | It is one of the sense                         |             |                                                               |                                                                                                                   | (4) (a)-ii, (b)-iii, (c)-iv, (d)-i |                                       |          |                                                   |  |
|            | • •                                                         | It is the first body se                        | -           |                                                               | Ans                                                                                                               | Ans. (2)                           |                                       |          |                                                   |  |
|            | belo                                                        |                                                | swei        | from the options given                                        | 196. Assertion (A):                                                                                               |                                    |                                       |          |                                                   |  |
|            | (1)                                                         | (a), (b), (c) and (d) a                        | re c        | orrect                                                        | A person goes to high altitude and experiences 'altitude<br>sickness' with symptoms like breathing difficulty and |                                    |                                       |          |                                                   |  |
|            | (2)                                                         | (b) and (c) are correct                        | ct          |                                                               |                                                                                                                   |                                    | art palpitations.                     |          | s breaking announcy and                           |  |
|            | (3)                                                         | (a), (b) and (c) are c                         | orre        | ct                                                            |                                                                                                                   | Rea                                | ason (R):                             |          |                                                   |  |
|            | (4)                                                         | (a), (b) and (d) are c                         | orre        | ct                                                            |                                                                                                                   |                                    |                                       |          | at high altitude, the body                        |  |
| Ans        | . (3)                                                       |                                                |             |                                                               |                                                                                                                   |                                    | es not get sufficien                  |          |                                                   |  |
| 193.       |                                                             | nich of the following<br>ulation Embryo Transf |             | <b>not</b> a step in Multiple<br>echnology (MOET)?            |                                                                                                                   | COI                                | rect answer from t                    | the opti | •                                                 |  |
|            | (1)                                                         | Cow is fertilized by a                         | artifio     | cial insemination                                             |                                                                                                                   | • • •                              | (A) is true but (R)                   |          |                                                   |  |
|            | (2)                                                         |                                                | insfe       | erred to surrogate mothers                                    |                                                                                                                   | . ,                                | (A) is false and (F                   | -        |                                                   |  |
|            | (3)                                                         | at 8-32 cell stage<br>Cow is administere       | d h         | ormone having LH like                                         |                                                                                                                   | (3)                                | explanation of (A)                    |          | ie and <b>(R)</b> is the correct                  |  |
|            | (4)                                                         | activity for super ovu<br>Cow yields about 6-  |             |                                                               |                                                                                                                   | (4)                                | Both (A) and (R) a explanation of (A) |          | but (R) is not the correct                        |  |
| Ans        | • •                                                         |                                                | 3           |                                                               | Ans                                                                                                               | . (3)                              |                                       |          |                                                   |  |
|            |                                                             | tch List-I with List-II                        |             |                                                               | 197.                                                                                                              | Ма                                 | tch the List-I with I                 | List-II  |                                                   |  |
|            |                                                             | List-I                                         |             | List-II                                                       |                                                                                                                   |                                    | List-I                                |          | List-II                                           |  |
|            | (a)                                                         | Allen's Rule                                   | (i)         | Kangaroo rat                                                  |                                                                                                                   | • •                                | Filariasis                            | (i)      | Haemophilus influenzae                            |  |
|            | (b)                                                         | Physiological                                  | (ii)        | Desert lizard                                                 |                                                                                                                   | • • •                              | Amoebiasis                            | (ii)     | Trichophyton                                      |  |
|            |                                                             | adaptation                                     |             |                                                               |                                                                                                                   |                                    | Pneumonia                             |          | Wuchereria bancrofti                              |  |
|            | (C)                                                         | Behavioural                                    | (iii)       | Marine fish at depth                                          |                                                                                                                   | • • •                              | Ringworm                              | . ,      | Entamoeba histolytica                             |  |
|            |                                                             | adaptation                                     |             |                                                               |                                                                                                                   | belo                               |                                       | answer   | from the options given                            |  |
|            | (d)                                                         | Biochemical                                    | (iv)        | Polar seal                                                    |                                                                                                                   | (1)                                | (a)-i, (b)-ii, (c)-iv, (              | d)-iii   |                                                   |  |
|            | <u>.</u>                                                    | adaptation                                     |             |                                                               |                                                                                                                   | (2)                                | (a)-ii, (b)-iii, (c)-i, (             | d)-iv    |                                                   |  |
|            | Cho                                                         |                                                | swer        | from the options given                                        |                                                                                                                   | (3)                                | (a)-iv, (b)-i, (c)-iii,               | (d)-ii   |                                                   |  |
|            | (1)                                                         | (a)-iv, (b)-i, (c)-ii, (d)-                    | iii         |                                                               |                                                                                                                   | (4)                                | (a)-iii, (b)-iv, (c)-i,               | (d)-ii   |                                                   |  |
|            |                                                             | (a)-iv, (b)-iii, (c)-ii, (d)                   |             |                                                               | Ans                                                                                                               | . (4)                              |                                       |          |                                                   |  |
|            |                                                             | (a)-iv, (b)-ii, (c)-iii, (d)                   |             |                                                               | 198.                                                                                                              |                                    |                                       | -        | tions that help to stop the                       |  |
|            | (4)                                                         | (a)-iv, (b)-i, (c)-iii, (d)-                   | ·ii         |                                                               |                                                                                                                   |                                    | -                                     |          | s across a tissue and with neighbouring cells via |  |
| Ans        | . (1)                                                       |                                                |             |                                                               |                                                                                                                   |                                    | id transfer of ions a                 |          |                                                   |  |
| 195.       | Ма                                                          | tch List-I with List-II                        |             | List II                                                       |                                                                                                                   |                                    | Adhering junct<br>pectively           | ions a   | and Tight Junctions,                              |  |
|            | (a)                                                         | List-l<br>Scapula                              | (i)         | List-II                                                       |                                                                                                                   | (2)                                | Adhering junctions                    | s and G  | ap junctions, respectively                        |  |
|            | . ,                                                         | Cranium                                        | (i)<br>(ii) | Cartilaginous joints<br>Flat bone                             |                                                                                                                   | (3)                                | Gap junctions and                     | Adheri   | ng junctions, respectively                        |  |
|            | • •                                                         | Sternum                                        | • •         | Fibrous joints                                                |                                                                                                                   | (4)                                | Tight junctions an                    | d Gap    | junctions, respectively                           |  |
|            | . ,                                                         | Vertebral column                               | (iiv)       |                                                               | Ans                                                                                                               | . (4)                              |                                       |          |                                                   |  |
|            | ()                                                          |                                                |             | -                                                             | 2                                                                                                                 |                                    |                                       |          |                                                   |  |
|            |                                                             |                                                |             |                                                               | -                                                                                                                 |                                    |                                       |          |                                                   |  |

| NEET (UG)-2021 (Code : O3)                                                 | ∂ Targ <u>et <b>PMT</b></u>                                   |
|----------------------------------------------------------------------------|---------------------------------------------------------------|
| 199. During muscular contraction which of the following                    | EACLOSITELY FOR MEDICAL ENTROPOLE                             |
| events occur?                                                              | Man and Whale                                                 |
| (a) 'H' zone disappears                                                    | (c) Divergent evolution (iii) Wings of Butterfly and          |
| (b) 'A' band widens                                                        | Bird                                                          |
| (c) 'l' band reduces in width                                              | (d) Evolution by (iv) Darwin Finches                          |
| <ul><li>(d) Myosine hydrolyzes ATP, releasing the ADP and<br/>Pi</li></ul> | anthropogenic                                                 |
| (e) Z-lines attached to actins are pulled inwards                          | action                                                        |
| Choose the <b>correct</b> answer from the options given below              | Choose the <b>correct</b> answer from the options given below |
| (1) (b), (c), (d), (e) only (2) (b), (d), (e), (a) only                    | (1) (a)-ii, (b)-i, (c)-iv, (d)-iii                            |
| (3) (a), (c), (d), (e) only (4) (a), (b), (c), (d) only                    | (2) (a)-i, (b)-iv, (c)-iii, (d)-ii                            |
| Ans. (3)                                                                   | (3) (a)-iv, (b)-iii, (c)-ii, (d)-i                            |
| 200. Match List-I with List-II                                             | (d) (d)-iii, (b)-ii, (c)-i, (d)-iv                            |
| List-I List-II                                                             | Ans. (3)                                                      |
| (a) Adaptive radiation (i) Selection of resistant                          |                                                               |
| varieties due to                                                           |                                                               |
| excessive use of<br>herbicides and                                         |                                                               |
| pesticides                                                                 |                                                               |
| pesitides                                                                  |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
| _                                                                          |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |
|                                                                            |                                                               |